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| Brief Bio

- MIT EECS Ph.D. #3rd year, supervisor: Song Han
» Obtained B.Sc from Zhejiang University and Simon Fraser University in 2019.
» Research interests include efficient deep learning algorithms and systems.
- Enthusiastic about open source
» Projects collects >7k stars / Contributed to pytorch, tvm, horovod, mmdetection

» Previous work integrated into PyTorch, AutoGluon, adapted by Sony, Intel, Amazon
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| Today’s Al is growing tooooo BIG

Better model always comes with higher computational cost (vision)
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Figures from Once-for-all project page.
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| Today’s Al is growing tooooo BIG

Better model always comes with higher computational cost (NLP)
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Figures from Microsoft Turing Project
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| Deep Learning Going “Tiny”

Cloud — Mobile — Tiny

(/predlctlon

* Data uploaded to the cloud for inference/training

Cloud Al

GPUs/TPUs
ResNet
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| Deep Learning Going “Tiny”

Cloud = Mobile — Tiny

Cloud Al Mobile Al
GPUs/TPUs Smartphones
ResNet MobileNet
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| Deep Learning Going “Tiny”

Cloud = Mobile — Tiny

Cloud Al Mobile Al
GPUs/TPUs Smartphones
ResNet MobileNet
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| Deep Learning Going “Tiny”

Cloud = Mobile — Tiny

=

Cloud Al Mobile Al Tiny Al
GPUs/TPUs Smartphones loT/Microcontrollers
ResNet MobileNet MCUNet
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| Deep Learning Going “Tiny”
Squeezing deep learning into loT devices

* Billions of loT devices around the world based on microcontrollers
* Low-cost: low-income people can afford access. Democratize Al.
* Low-power: green Al, reduce carbon

40

#Units
(Billion)
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0

12 14 16F18F

Ubiquitous Low-cost Low-power
($0.1 - $10) (MW)
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| Deep Learning Going “Tiny”
Squeezing deep learning into loT devices

* Billions of loT devices around the world based on microcontrollers
* Low-cost: low-income people can afford access. Democratize Al.

* Low-power: green Al, reduce carbon

* \arious applications

Smart Home Smart Manufacturing Personalized Healthcare Precise Agriculture
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| TinyML is Challenging

Memory size is too small to hold DNNs

 Memory usage of a conv net

|r.1pufc kernel ogtpgt
activation activation
[ ) [ )
SRAM DRAM/Flash
. y, . y,
Memory Storage
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| TinyML is Challenging

Memory size is too small to hold DNNs

Cloud Al Mobile Al
Memory (Activation) 32GB 4GB
Storage (Weights) ~TB/PB 256GB
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| TinyML is Challenging

Memory size is too small to hold DNNs

Cloud Al Mobile Al Tiny Al
Memory (Activation) 32GB 4GB 320kB
Storage (Weights) ~TB/PB 256GB 1MB
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| TinyML is Challenging

Memory size is too small to hold DNNs

Cloud Al Mobile Al Tiny Al
Memory (Activation) 32GB 4GB 320kB
\ 13,000x

smaller

100,000x
smaller
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l Today’s CNNs are Too Big for TinyML

Cloud/Mobile CNNs cannot fit tinyML

Peak Memory (kB)
ResNet-50 23X

MobileNetV2 22 —mm

MobileNetV2 (int8) <+— 5x —i

0 .320kB 2000 4000 6000 8000

"m -~

Toy applications
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l Today’s CNNs are Too Big for TinyML

Cloud/Mobile CNNs cannot fit tinyML

Peak Memory (kB)
ResNet-50 23X

MobileNetV2 22 —mm

MobileNetV2 (int8) <+— 5x —i

0 :320kB 2000 4000 6000 8000
» constraint

dom $ cat /dev/cu.kts
Object classificathio

TinyML

L ¥
_« - "] 4‘”‘“"‘ '.
S s
r [ AR S
T e e M 2
-—",&,' ‘q—'kvr"-’#'- 'Q'

Toy applications Real life appllcatlons
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| TinyML is Challenging

We need to reduce both weight and activation

~/0% ImageNet Top-1
B ResNet-18 MobileNetV2-0.75 Il MCUNet

12
9.6
7.2  4.6x
4.8
2.4 v 1.8x
) n
Param (MB) Peak Activation (MB)

(calculated in INT8)
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| TinyML is Challenging

We need to reduce both weight and activation

~/0% ImageNet Top-1
I ResNet-18 MobileNetV2-0.75 BB MCUNet

12 —
9.6 :
6.1X
7.2 ;
4.8 :
2.4 4 3.4x
Param (MB) Peak Activation (MB)

(calculated in INT8)
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l Overview

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object
detection, etc.

MCUNetV3

Tiny On-Device Training

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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l Overview

MCUNetV1

Tiny Image Recognition

Inference

MCUNetV2

Higher Resolution for Object
detection, etc.

MCUNetV3

Tiny On-Device Training Trammg

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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l Overview
Co-design

MCUNetV1

Tiny Image Recognition

MCUNetV2

Higher Resolution for Object Algorithm
detection, etc.

MCUNetV3

Tiny On-Device Training

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]
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Tiny Inference

- MCUNetV1
- MCUNetV2

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]

MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu 22
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I MCUNet: System-Algorithm Co-design

- S Lo §

(@) Search NN model on an existing library (b) Tune deep learning library given a NN model
e.qg., ProxylessNAS, MnasNet e.g., T'VM

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning [Chen et al., OSDI 2018]
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I MCUNet: System-Algorithm Co-design

- S Lo §

(@) Search NN model on an existing library (b) Tune deep learning library given a NN model
e.qg., ProxylessNAS, MnasNet e.g., T'VM

Efficient Neural Architecture

Gy
[ ] MCUNet TinyEngine
\

Efficient Compiler / Runtime

(c) MCUNEet. system-algorithm co-design
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| TinyEngine: A Memory-Efficient Inference Library

< 3.4x smaller

Code generation | Baseline: ARM CMSIS-NN i |
0 48 76 160

Peak Mem (KB) |

= 1.6x faster >
Baseline: ARM CMSIS-NN i Code generation . Op fusion Loop unrolling Tiling
0 52 64 70 75 79 82

Million MAC/s 1
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| TinyEngine: A Memory-Efficient Inference Library

< 3.4x smaller :
Code generation | Baseline: ARM CMSIS-NN i
0 48 76 160

Peak Mem (KB) |

= 1.6x faster >
Baseline: ARM CMSIS-NN i Code generation . Op fusion Loop unrolling Tiling
0 52 64 70 75 79 82
Million MAC/s ©
‘ s VM M
<7 a0 LV AR
B CMSIS-NN B TinyEngine

TF-Lite Micro I MicroTVM Tuned

230 100% ]
184 75%
3.3 3X
138 sm al)l(er 4 8x . faster fas
97 l smaller 0%
46 I v 25%
41
[ 77, I 0% [ 0 7. 77 .
SmallCifar MobileNetV2  ProxylessNAS SmallCifar MobileNetV2  ProxylessNAS MnasNet
Peak Mem (KB)| Normalized Speed?
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| Tiny Image Classification

ImageNet-level image classification

* With techniques like MCUNet, we are able to achieve ImageNet-level image classification
performance on microcontrollers (int4 quantization)

70% milestone:

ResNet
MobileNetV2
MCUNet

75

70

65

60

55

50

System-Algorithm Co-Design for TinyML

ImageNet Top-1 Accuracy (%)

-+17
] I 5

The first to achieve >70%
ImageNet accuracy on
commercial MCUs

%

STM32F412 STM32F746 STM32F765 STM32H743
(256kB/1MB) (320kB/1MB) (512kB/1MB) (512kB/2MB)

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2019]



MCUNetV2: Patch-based Inference

1. Saving Memory with Patch-based Inference
* Memory saving for MobileNetV2

per-layer inference > peak mem: 1372kB
1400
High | Low
mem. | mem.
1120 / < >
Peak Mem
840 1372kB

560

Memory Usage (kB)

256kB constraint of MCU

280 |

Block Index

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
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MCUNetV2: Patch-based Inference

1. Saving Memory with Patch-based Inference
 Memory saving for MobileNetV?2

per-patch inference —> per-layer inference > peak mem: 172kB
1400 ,
L High | Low T
- mem. | mem.
1120 - > 8
o) L larger
X Org peak : |
mem.
% 840
®
7
- o § 5
> 560 | TTTRb L New peak
2 mem.
é) 580 256kB constraint of MCU
S e S T L S e S £ e ]
; 1 1 0 T 0 1 1 g

0 1 2 3 4 5 6 V4 8 9 10 11 12 13 14 16 16 17
Block Index

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
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| MCUNetV2: Patch-based Inference

1. Saving Memory with Patch-based Inference

* Memory saving for other models
 Baseline: TinyEngine. Measured on STM32F746

Measured Peak SRAM (kB)
| Per-layer B Per-patch (2x2) B Per-patch (3x3)

320 I I
256 40k I 4.1x I
smaller 5.9x smaller
192 smaller 4.2x
smaller
128 l
64
56

MbV?2 MbV2-RD FBNet-A MCUNet
wO0.5, r144 wO0.5, r144 wO0.45, r144 w1.0, r144

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
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| MCUNetV2: Patch-based Inference

1. Saving Memory with Patch-based Inference

* Break the memory bottleneck with patch-based inference
e a practical 2-layer example

conv conv2
s=1 S=2

Layer 1
per-layer inference

I In memory

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]

MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu 52
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| MCUNetV2: Patch-based Inference

1. Saving Memory with Patch-based Inference

* Break the memory bottleneck with patch-based inference
e a practical 2-layer example

conv conv?2 convi
s=1 S=2
|
|
|
>
per-layer inference per-patch inference

I In memory

“need to hold entire output

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]

MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu 53
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| MCUNetV2: Patch-based Inference

2. Joint Automated Search for Optimization

<1 o

Neural architecture Inference scheduling
#layers #patches
#channels #layers for patch-based
kernel size other knobs from
TinyEngine

System-Algorithm Co-Design for TinyML



| MCUNetV2: Patch-based Inference

Visual Wake Words under 32KB memory
* Higher accuracy, 4x lower SRAM

----
e et il
f,‘:l{!.’l, ’’’’’

(b) ‘Not-person’

4 MCUNetV2 €9 MCUNet (a) "Person’
o4 s ) MbV2+TF-the PfO)_(YlGSS"‘TF-the Peak SRAM (kB) @ 90%

\’2 62 »118kB ; 120 —
& i
> 92 +4.0% 256kB
> i : traint
< 4.0xsmaller :COHIS/ICU 90 a

TN A ' X
; 20 301:B :On smaller
> : 60
g 86 : 30
E ., |Flash < IMB E : [

20 88 156 224 292 360 MCUNet MCUNetV2
Measured Peak SRAM (kB)
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| MCUNetV2: Patch-based Inference

Advancing object detection by allowing a larger resolution

* Resolution is more important for detection than classification
* Our method significantly improves objection detection by double digits

STM32F746 (320kB SRAM)
+16.9%

~
N

~l
o

~]

S
o
o

: larger

AN
N

® VOC mAP
ImgNet Top-1

1N
o

Accuracy/mAP (%)
P>

N

S
W
o

MAP on Pascal VOC (%)
@)
o

160 224 288 352

Image Resolution

N
o

MbV2 MCUNet MCUNetV2
+CMSIS

System-Algorithm Co-Design for TinyML



| MCUNetV2: Patch-based Inference

Advancing object detection by allowing a larger resolution

Al

Face/mask detection

Person detection
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Tiny On-Device Training

- Sparse Update
- Tiny Training Engine (TTE)

On-Device Training Under 256KB SRAM [Lin et al., NeurlPS 2022]

System-Algorithm Co-Design for TinyML



| Can We Learn on the Edge?

From tinyML inference to training

Cloud-based Learning

On-device Learning

'l' ||||

New and Sensitive data cannot be sent to the
Data cloud for privacy reason
User Intelligent Edge Devices Cloud Server

-On-device learning:
-customization by adapting to user data / life-long learning

- better privacy, lower cost

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 38
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| Can We Learn on the Edge?

From tinyML inference to training

A virtuous cycle:

~ = O -
((c =) QI'-Q m Generate r'.’. " .||||||I||||. Privacy-preserving ‘e
- LLLIEL [Collect LJ Learning on edge

\_ Ubiquitous Al Applications User’s Private Data On-device Larning

Customization; Continual Learning

-On-device learning:
-customization by adapting to user data / life-long learning

- better privacy, lower cost

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 39
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| Can We Learn on the Edge?

From tinyML inference to training

A virtuous cycle:

2
-y
“=.Q 320

-
——

= UG
((‘ ))) QI'-Q m Generate | '
: LM [ Collect LJ

\_ Ubiquitous Al Applications User’s Private Data On-device Larning

Customization; Continual Learning

-On-device learning:
-customization by adapting to user data / life-long learning
- better privacy, lower cost

- Training Is more expensive than inference

- For example, store intermediate activation, extra back-propagation, etc.

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 40
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| Training Memory is the Key Bottleneck

» Edge devices have tight memory constraints. The training memory footprint of neural networks
can easily exceed the limit.

500
)
=
— 375
g
S < Raspberry Pi 1 DRAM
O A e %17 Raspberry Pi
O 250 * 4
S0 4/ 256MB
-
e
& 125
)
=
MCU: 256KB SRAM
20
Inference Training
Batch Size = 1 Batch Size =8

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| On-Device Training Under 256KB Memory

* Training is more expensive than inference due to back-propagation, making it hard to fit loT
devices (e.g., MCU only has 256KB SRAM).

5256KB constraint
! 652 MB

TensorFlow (cloud)
303 MB

PyTorch (cloud)

41.5 MB
MNN (edge)

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 42
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| On-Device Training Under 256KB Memory

* Training is more expensive than inference due to back-propagation, making it hard to fit loT
devices (e.g., MCU only has 256KB SRAM).

5256KB constraint

652 MB
TensorFlow (cloud)
303 MB
PyTorch (cloud) |
: 41.5 MB
MNN (edge)—
: 5.7 MB
Tiny Training Engine I <« 7.3
. | 5 2. 9MB
+ Quantization-aware scaling | < 1 2.0x
358 KB
+ Sparse layer/tensor update E———— < 8.8x
141 KB |
+ Operator reordering gl «——— 2.4x
< 2300Xx
0.1 MB 1 MB 10 MB 100 MB

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 43
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| On-Device Training Under 256KB Memory

SRO%S

1. Quantization-aware 2. Sparse layer/tensor 3. Tiny Training
scaling update Engine

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 44
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| On-Device Training Under 256KB Memory

i

1. Quantization-aware
scaling

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 45
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l 1. Quantization-Aware Scaling (QAS)

Real quantized graphs save memory, but are hard to quantize

-----------------------------------

value range
(_67 6) .

....................................

™

(@) Fake Quantization
(quantization aware training)

Most intermediate tensors are still in FP32 format in fake quantization,
thus cannot save memory footprint

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 46
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l 1. Quantization-Aware Scaling (QAS)

Real quantized graphs save memory, but are hard to quantize

-----------------------------------

value range [
(-6,6) i

....................................

i R
(@) Fake Quantization (b) Real Quantization
(quantization aware training) (inference/on-device training)

All tensors are in int8/int32 format for real quantization,
thus save memory footprint, but leading to optimization difficulty

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 47
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l 1. Quantization-Aware Scaling (QAS)

Quantized graphs save memory, but are hard to quantize

Making training difficult:
* Mixed precisions: int8/int32/fp32...
* Lack BatchNorm

Performance Comparison (average on 10 datasets)

L . 10.6%

> \t?p-u

Q :

o a

(a) Real Quantization § s

<

&

= .
FP32 Int8
SGD SGD

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 48
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l 1. Quantization-Aware Scaling (QAS)

Quantization leads to distorted gradient magnitudes

- Why is the training convergence worse?
- The scale of weight and gradients does not match in real
quantized training!

35 .
= — fp32 _thB |
EZSM — |
§1sv V/\V/\/\/\/\/\/\\I/\/\/\/
= |
%755

-5

Tensor Index

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 49
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l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

Quantization overview

Vintg = cast2int8[ssp32 - (WintsXints + binesz)],

Per Channel scaling
quantize

WZSW°(W/Sw) ~ 8W°W, GV—V%8W°Gw,

Weight and gradient ratios are off by Sy =7
IWI/IGwll ~ W /swll/llsw - Gwll =[5 { WI/IG]|

Thus, re-scale the gradients
Gw = Gw -sw, Gg=Gg -sw 5. =Gg- 5"

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 50
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l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

~ —2 ~ . _ —2 -2 _ —2
G’V_V:GV_V GE—Gb-SW-Sx —G’b

35
— fp32 — intAS i int8+QAS

S 25 ||, - "
= | WYY
= | QAS aligns the W/G
o 5 ratio with fp32 l
o

-

Tensor Index
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l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

Without QAS, poor convergence

6 6
g 5 2 5
— 4 3 4
£ 3 = 3
= 2 ~ )
1 1
0 10 20 30 40 0 0 10 20 30 40 50
Training Epochs Training Epochs

With QAS, better convergence

After applying QAS, the convergence of real quantized is stable.

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 52
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l 1. Quantization-Aware Scaling (QAS)

QAS addresses the optimization difficulty of quantized graphs

9 Improve
= accuracy
@
©
-
S
O
@)
<
S
— !
FP32 SGD Int8 SGD Int8 LARS  Int8 Adam Int8 QAS
Extra memory  (ours)
(3x)

QAS improves the accuracy over naive int8 training, and shows
no inferior performance than fp32 results.

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 53
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| On-Device Training Under 256KB Memory

Wy s

2. Sparse layer/tensor 3. Tiny Training
update Engine

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 54
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| Training Memory is the Key Bottleneck

Answer: Because of intermediate activations

Forward: 4,1 = aiwi T bi

oL

- oL
Back : = a;
ackward OW. j oa..

* |Inference does not need to store activations, training does.
* Activations grows linearly with batch size, which is always 1 for inference.

* Even with bs=1, activations are usually larger than model weights.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| Training Memory is the Key Bottleneck

B ResNet-50

800
600

6.9x larger
400 Activation is the

main bottleneck,
200 not parameters.

, 1

Param (MB) Activation (MB)

 Activation is the main bottleneck for on-device learning, not parameters.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| Training Memory is the Key Bottleneck

B ResNet-50 B MbV2-1.4

800
“', 1.1x The main bottleneck does

600 not improve much.

6.9x larger
400 Activation is the

main bottleneck,

not parameters.
200 P

v 4.3x
0

Param (MB) Activation (MB)

 Activation is the main bottleneck for on-device learning, not parameters.
* Previous methods focus on reducing the number of parameters or
FLOPs, while the main bottleneck does not improve much.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurlPS 2020]
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| 2. Sparse Layer/Tensor Update

Full update

bIaSGSI:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:II:I

e g >
p< < P<
e e t~
A led 2 led 2
=5 b =0 =

Model: ProxylessNAS-Mobile

weights

Updating the whole model is too expensive:
e Need to save all intermediate activation (quite large)
e Need to store the updated weights in SRAM (Flash is read-only)

B ResNet-50 (Full)

95 30 VB |
86 <—— Far beyond the on-device
77 20 MB learning capacity
o8 10 MB
59
50 0 MB

Cars Top1 (%) #Trainable Param (M)

On-Device Training Under 256KB Memory https://tinytraining.mit.edu
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| 2. Sparse Layer/Tensor Update

Last layer update

Welghts-mi‘% > ,_> ._>><_> ~—> 9 _> -> ->><—>><-> > 7 i A 2 b -> 2l F il 2 2]

m:ioi fmiim:im:im:im: iRt imtimiimiintimiim:im:igp: :53:=8:=5355§:
- I=E-E IR = - - =K =R - - - - - =T =1 =T - T =

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Model: ProxylessNAS-Mobile

Updating only the last cheap
e No need to back propagating to previous layers
e But the accuracy is low and not ideal.

B ResNet-50 (Full) I ResNet-50 (Last)

95 30

Far beyond the on-
86

Significant 50 device learning
77 accuracy capacity
68 degradation! 10
59
50 0
Cars Top1 (%) #Trainable Param (M)

On-Device Training Under 256KB Memory https://tinytraining.mit.edu


https://tinytraining.mit.edu

| 2. Sparse Layer/Tensor Update
Bias-only update

4.\
MB3 5x5
2.\
MB3 3x3
MB3 7x7
PV
MB3 3x3
2.
MB3 5x5

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Model: ProxylessNAS-Mobile

Updating the only the bias part
e No need to store the activations dW = (X, dY)
e Back propagating to the first layer. ~ db =f(dY)

B ResNet-50 (Full) I ResNet-50 (Last) ResNet-50 (BN+Last)

95 30
86 :
77 20 :
68 10 1?X
59 v
50 0
Cars Top1 (%) #Trainable Param (M)
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| 2. Sparse Layer/Tensor Update

Updated synapses are sparse

15000 synapses
per neuron [1]

Q&es are getting "sparse"

——

¢ 3 per neuron
2500 synapses K-12 education
per neuron!l

7000 synapses

> Time
Newborn 2-4 years old Adolescence Adult
Do We Have Brain to Spare? [Drachman DA, Neurology 2004] Data Source: 1, 2
Peter Huttenlocher (1931-2013) [Walsh, C. A., Nature 2013] Slide Inspiration: Alila Medical Media
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| 2. Sparse Layer/Tensor Update

Sparse Layer/ Tensor Update Sparse tensor backpropagation
""""""" . ' 7 I:I I:I I:I I:I I\ 71 I AV [ BAYE

Backpropagatlon stops here Sparse layer backpropagation

Updating the sparse tensors / layers Model: ProxylessNAS-Mobile
e Some layers are more important than others

14%
= 11% | ® update all channels
S go, | ® update 1/2 channels
§ 50/, update 1/4 channels
V @ update 1/8 channels /A A A ,A A A
z 2% - /\A/A ’Av’ | A
A NNWVACZ A
—4%

5 10 15 20 25 30 35 40
layer index to update weight
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| 2. Sparse Layer/Tensor Update

Sparse Layer/ Tensor Update Sparse tensor backpropagation

52&3&3&?&3&3&3&“%
lllllllilililglglg

Backpropagatlon stops here Sparse layer backpropagation

Updating the sparse tensors / layers Model: ProxylessNAS-Mobile
e Some layers are more important than others

e No need to back propagate the early layers

e Only need to store a subset of the activations.

(H, N) (N, M) (H, M) (H, M)
-l [ _
Activation to store: ( Activation to store: (N, 0.25*M)
%
Weight in SRAM: (M, H) Reduce by 4x Weight in SRAM: (0.25*M, H)
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| 2. Sparse Layer/Tensor Update

Sparse Layer/ Tensor Update Sparse tensor backpropagation
freeey geeens gensn ey peemes geen s peese ey peeess ‘ M OO e B D
EEHEME%E&x» SEI NS
Ebistidterielilidd b o' !I!I!Il 1 llll! i
N SR B I o S I I S ool S R R
Backpropagatlon stops here Sparse layer backpropagation
Model: ProxylessNAS-Mobile
update last k biases -®- update last k layers -®- sparse update (ours)
77 72 = 75
3 o <150kB T "
Q:/ 75 S100/ISB:_ _____________ _4__5__>_<_"smaller 70 '4 """"""""" 75><smaller """""" @ 73 /.4 ...................... 71><smaller ................ ®
................................ ® ././ ////
2 | Ao higher ac a/ — s / _— Tl e e ugper
iy bound & it bdund
= e<50kB /0 ./ 69 /.
S 71 ° 66 / ®
> 67
< .
69 64 “ da 65 a
40 155 270 3835 500 40 110 180 250 545 40 110 180 250 524
Extra Memory (KB) Extra Memory (KB) Extra Memory (KB)
(a) MCUNet-5FPS (b) MbV2-w0.35 (c) Proxyless-w0.3
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P iSiisSiisi IS ISt IS

IV TR HIN R E G F TR IS S TCRVE I S TR SR IR ST S TGRSR I PO R FERSE TRV FORYE IRV S PO
. — N N N N N N No) N N N No) N N N No) O N N No)
= N - M M M M M = N M M Mm = M M M M M = M = M M M M

(c) Bias-only update

............. ggggggggggggggggggi
: P i@l i@l i@l igiimEiml i
IR =R IR = =N A

= ] = ] = ] = ]
gesee TS res SEEEEre  SEsErEre e Erre SEEpEree SSEpEEEe gy s wEErErErs SmEEErEs  SEEEER

(d) Sparse layer/Sparse tensor update
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| On-Device Training Under 256KB Memory

SRO%S

3. Tiny Training
Engine
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| 3. Tiny Training Engine (TTE)

Existing frameworks cannot fit

* Runtime is heavy
» Heavy dependencies and large binary size (>100MB static memory)
 Auto-diff at runtime; low edge efficiency
* Memory is heavy
» A lot of intermediate (and unused) buffers
» Has to compute full gradients

5256KB constraint
: 652 MB

TensorFlow (cloud) —

: 303 MB
Py Torch (€10 U Cl ) |1————

41.5 MB

MNN (edge)—
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph
(forward)
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph 3. Computation Graph
(forward) (backward)

2. AutoDift

—>

MatMul
Jx) = fi(x)
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph 3. Computation Graph
(forward) (backward)

2. AutoDiff |
—_— 4. Execution
Jx) = f(x) Engine
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| 3. Tiny Training Engine (TTE)

Workflow of conventional training engine

1. Computation Graph 3. Computation Graph
(forward) (backward)
2. AutoDift
MatMul _— MatMul’ 4. Execution
Gi) > G

Engine

. Compile-Time Conventional training framework focus on flexibility,

and the auto-diff is performed at runtime.

- Runtime Thus, any optimizations will lead to runtime overhead.
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| 3. Tiny Training Engine (TTE)

TTE: Move workload from runtime to compile time

1. Computation Graph 3. Computation Graph
(forward) (backward)
2. AutoDift |
—_— 4. Execution
J(x) = f(x) Engine
: Compile-Time TTE moves most workload from runtime to compile-time,

thus minimizes the runtime overhead,
: Runti
A also enables opportunities for extensive graph optimizations.
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| 3. Tiny Training Engine (TTE)

Enable graph optimizations (backward pruning, reordering, etc.)

Feed data and execute Apply gradient step

- Compile-Time
Wy =W — N8
Wy =Wy — 18>
0

Conventional training framework performs most tasks at runtime.

-

o

cor
r=x-)
PO
-

Forward graph Sparse update Fusion and reorder Compute and in-place Update

o e  {o}
i Bl EeEeE Code Generaion 0 = kel
W, =W, — 1§,

— FWD Graph g,_1 = backward(g,)
e — Optimized BWD Graph W, 1 =W, _1—Ng,_1
e — Gradient Step Graph
Backward graph @

-

= °
cor o
-1-}
o
-
oo

Tiny Training Engine (ours) separate the environment of runtime and compile time.
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3. Tiny Training Engine (TTE)

B updated O fixed

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update
fn (%x: Tensor[ (10, 10), float32], Example from a matrix
*weight: Tensor[ (10, 10), float32], multiplication with full update

$bias: Tensor[(10), float32]),
3grad: Tensor[(10), float32]),

# forward

Forward
y =mul(x,w)+b

Backward = multiply(%grad, %weight);
dy/dx = mul(G,w)
transpose(%grad) ;
dyldw = mul(G', X) multiply (%4, %x);
dy/db = sum(G) sum(%grad, axis=-1);
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3. Tiny Training Engine (TTE)

iil ibIH .| | | ||

(a) full update (b) bias-on (c) sparse layer update (d) sparse tensor update

fn (%x: Tensor[ (10, 10), float32, needs grad=True],
Swelght: Tensor[ (10, 10), float32, needs grad=False],
$bias: Tensor[(10), float32, needs grad=True],

sgrad: Tensor[ (10 float32
J L(10) - 1) Annotate whether a tensor

requires gradient or not
# forward

Forward $0 = multiply(%x, %weight);
y = mul(x,w) + b 31 = add (%0, %bias);
# backward
Backward $3 = multiply(%$grad, %weight); ====> dy / dx

dy/dx = mul(G,w)

%4 = transpose(zgrad);
cbﬂdWH:lnuKCﬂ:X) $5 = multiply (%4, %X); ====> dy / dw
dy/db = sum(G) %6 = sum(%grad, axis=-1); ====> dy / db
(33, %5, %6)
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| 3. Tiny Training Engine (TTE)

iil ibIH .| | | ||

(a) full update (b) bias-on (c) sparse layer update (d) sparse tensor update

fn (%x: Tensor[ (10, 10), float32, needs grad=True],
Swelght: Tensor[ (10, 10), float32, needs grad=False],
$bias: Tensor[(10), float32, needs grad=True],
%grad: Tensor[(10), float32]),

{

# forward

$0 = multiply(%x, %Swelght);

%1 = add (%0, %bias);

# backward

$3 = multiply(%grad, %weight); ====> dy / dx
Remove unnecessary computations To——transpese{grae)t
from DAG via dependency analysis 55— ' %% ====> dy / dw

and dead-code elimination. %6 = sum(%grad, axis=-1); ====> dy / db

(%3, %5, %6)
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| 3. Tiny Training Engine (TTE)

i il ibIH | | ||

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

fn (%x: Tensor[ (10, 10), float32, needs grad=False],
Swelghtl: Tensor[ (10, 10), needs grad=False],
$biasl: Tensor[(10), needs grad=False],
Sweight2: Tensor[ (10, 10), needs grad=True],
$bias2: Tensor[(10), needs grad=True],

%grad: .., float32]),

Freely annotate ANY parameters
TTE will trim the computation accordingly.
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3. Tiny Training Engine (TTE)

i il ibIH | .|

B updated [ fixed

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update
fn (%x: Tensor[ (10, 10), float32], fn (%x: Tensor[ (10, 10), float32, needs grad=True],
$weight: Tensor[ (10, 10), float32], $weight: Tensor[ (20, 10), float32, ,
$bias: Tensor[(10), float32]), tbias: Tensor[(20), float32, needs grad=True],
%grad: Tensor[(10), float32]), %grad: Tensor[ (10, 20), float32]),
{ —_—>
# forward Automatically remove # forward
20 = multiply(%x, sweight); thebuffersofpruned g0 = muitiply($x, Sweight);
$1 = add (%0, %$bias); gﬂadkﬁﬂSfKﬁnthe 0.1 = slice(%x, begin=[0, 0], ends=[10, 10]);

# backward computation graph. 1 = add(%0, %bias);

= multiply(%grad, %$weight); # backward

o

o©°
w

o\©°
1N
o\©
W

= transpose(%grad) = multiply(%grad, %weight);

o©
(8 |
o
1N

= multiply (%4, %x); = transpose(%grad)
= sum(%grad, axis=-1); = multiply (%4, %0.1);
(83, %5, %6) sum(%grad, axis=-1);

} (33, %5, %6)

o©°
o\
o
(8 |

o
(o)
Il
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| 3. Tiny Training Engine (TTE)

Sparse update results

. full update sparse update
4000 3 650
= 3000 | 2239 5 745 [
3 T 6.5x
£ smaller
s 2000 sr?{a?I)l(er
X 8.4x
o smaller
Q. 1000 v
v £ 560
335 326 }
J [

* Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

* After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory
saving
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

2 U

I B, U,

Fy By | Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Al B Z

I B, U,

Fy By | Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy By | Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy By || Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

Fy

B,

Uy

(a) Conventional way to update parameters

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

F| B, |——Memory waste! —[g,
F2 BZ U2
Fl Bl Ul
FO BO UO

(a) Conventional way to update parameters

Operator life-cycle analysis reveals the memory
redundancy in the optimization step.

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

F.| B; [«——Memory waste! —— U, F,| By |Usl Immediately released
I B, U, I B, Ul l/
F, B, U, F, B, |U, |
F, B, |U, F, B, |U,
(a) Conventional way to update parameters (b) Operator re-ordering
Operator life-cycle analysis reveals the memory After re-ordering, the redundant memory
redundancy in the optimization step. usage is eliminated from training.

F: Forward, B: Backward, U: Update
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| 3. Tiny Training Engine (TTE)

Re-ordering reduces memory footprint

. Inference Training (activation) [ Training (weights) B Training (gradients) [ Trainable weights
~ 384 . 384 f
@ Memory optimized via |
— 2881 Oneratore (i -Place gradientupdate 4 288
S :
E
21 192 192
g ¥
5 .
> . .
0 30 60 90 120 150 180 210 240 270 0 30 60 90 120 150 180 210 240 270
Life cycle (operator index) Life cycle (operator index)
(a) Vanilla backward graph (b) Optimized backward graph

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.
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| 3. Tiny Training Engine (TTE)

Smaller memory usage, faster training speed

I full update sparse update [ TF-Lite, full (projected, OOM)
B sparse update + reorder TF-Lite, sparse M TTE, sparse
— 4000 3650 15000 13302
N —>
2 3000 | g 12000 |
~ 21x = 25%
QE) 2000 ) smaller c>)~. 9000 24x faster
S 1 = 6000 faster 5607
3 2ag ST 111
S 1000 5 3000 |
F- 373
0 | 0
MbV2 Proxyless = MCUNet MbV2 Proxyless MCUNet
(a) Peak memory vs. models (c) Traimning latency vs. models
20x smaller memory 23x faster speed
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https://www.bilibili.com/video/BV1qv4y1d7MV/
https://youtu.be/XaDCO8YtmBw

| Media Report

MIT News

MIT News

ON CAMPUS AND AROUND THE WORLD £ SUBSCRIBE v SEARCH NEWS

System brings deep learning to
“internet of things” devices

Advance could enable artificial intelligence on
household appliances while enhancing data security
and energy efficiency.

@ Watch Video

Daniel Ackerman | MIT News Office
November 13, 2020

g

7’

v PRESS INQUIRIES

MIT researchers have developed a
system, called MCUNet, that brings
machine learning to microcontrollers.
The advance could enhance the
function and security of devices
connected to the Internet of Things
(loT).
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ON CAMPUS AND AROUND THE WORLD

Tiny machine learning design
alleviates a bottleneck in memory
usage on internet-of-things devices

New technique applied to small computer chips
enables efficient vision and detection algorithms
without internet connectivity.

() Watch Video

Lauren Hinkel | MIT-IBM Watson Al Lab
December 8, 2021

E< SUBSCRIBE v SEARCH NEWS

v PRESS INQUIRIES

An MIT team's tinyML vision system
outperforms other models in many
image classification and detection
tasks.

Photo courtesy of the researchers.

MIT News

ON CAMPUS AND AROUND THE WORLD < SUBSCRIBE v SEARCH NEWS

Learning on the edge

A new technique enables Al models to continually learn
from new data on intelligent edge devices like
smartphones and sensors, reducing energy costs and
privacy risks.

Adam Zewe | MIT News Office
October 4, 2022

v PRESS INQUIRIES

A machine-learning model on an
intelligent edge device allows it to adapt
to new data and make better predictions.
For instance, training a model on a smart
keyboard could enable the keyboard to
continually learn from the user’s writing.

Image: Digital collage by Jose-Luis Olivares,
MIT, using stock images and images derived
from MidJourney Al.

(Homepage highlight)

MCUNet: Tiny Deep Learning on loT Devices [Lin et al., NeurlPS 2020]
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurlPS 2021]
On-Device Training Under 256KB Memory [Lin et al., NeurlPS 2022]

System-Algorithm Co-Design for TinyML
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I New Course: TinyML and Efficient Deep Learning Computing
MIT 6.S965: https://efficientml.ai

6.S965 Logistics Schedule

 This course is a deep dive into efficient machine learning

, o _ techniques that enable powerful deep learning applications on
TinyML and Efficient Deep Learning resource-constrained devices.

6.5965 - Fall 2022 - MIT

Have you found it difficult to deploy neural networks on mobile devices and IoT devices? Have you ever found it too Anonymous Student Feed back Collected from M id _te rm

slow to train neural networks? This course is a deep dive into efficient machine learning techniques that enable
powerful deep learning applications on resource-constrained devices. Topics cover efficient inference techniques,

including model compression, pruning, quantization, neural architecture search, and distillation; and efficient training | reaIIy like how structured the labs are. and being able to see actual implementations of the techniques we
]

techniques, including gradient compression and on-device transfer learning; followed by application-specific model

optimization techniques for videos, point cloud, and NLP; and efficient quantum machine learning. Students will get learn about.

hands-on experience implementing deep learning applications on microcontrollers, mobile phones, and quantum
machines with an open-ended design project related to mobile Al.

This is honestly one of the best set up courses I've taken at MIT

Time: Tuesday/Thursday 3:30-5:00 pm Eastern Time —
Location: 36-156

Office Hour: Thursday 5:00-6:00 pm Eastern Time, 38-344 Meeting Room

Discussion: Piazza

« Homework submission: Canvas | love how we are using microntroller and focusing on application instead of just theories.
» Online lectures: The lectures will be streamed on YouTube.
» Resources: MIT HAN Lab, Github, TinyML, MCUNet, OFA —

Contact: Students should ask all course-related questions on Piazza. For external inquiries, personal matters, or

emergencies, you can email us at 6s965-fall2022-staff@mit.edu. . .
? g | managed the weekly labs and lectures by only watching the course on YouTube. As a researcher, | gained

some valuable knowledge from your course. Excellent slides and teaching and useful labs.

Instructor Song Han
Email: songhan@mit.edu

TA Zhijian Liu
Email: zhijian@mit.edu

| like the class and | have been able to follow the class easily (which had rarely happened to me in my

Py, TA YU Lin previous courses)
el 3 Email: yujunlin@mit.edu
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