
https://mcunet.mit.edu

Ligeng Zhu

Algorithm-System
Co-Design for TinyML

ligeng@mit.edu

MIT

mailto:ligeng@mit.edu

System-Algorithm Co-Design for TinyML

Brief Bio
● MIT EECS Ph.D. #3rd year, supervisor: Song Han

● Obtained B.Sc from Zhejiang University and Simon Fraser University in 2019.

● Research interests include efficient deep learning algorithms and systems.

● Enthusiastic about open source

● Projects collects >7k stars / Contributed to pytorch, tvm, horovod, mmdetection

● Previous work integrated into PyTorch, AutoGluon, adapted by Sony, Intel, Amazon

2

System-Algorithm Co-Design for TinyML

Today’s AI is growing tooooo BIG
Better model always comes with higher computational cost (vision)

3

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81
Im

ag
eN

et
 T

op
-1

 a
cc

ur
ac

y
(%

)

2M 4M 8M 16M 32M 64M

MBNetV2

ShuffleNet

IGCV3-D

MobileNetV1

InceptionV

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-5
InceptionV

DenseNet-26

DPN-92

ResNet-101

X-ception

ResNetXt-101

#Parameter

Figures from Once-for-all project page.

System-Algorithm Co-Design for TinyML

Today’s AI is growing tooooo BIG
Better model always comes with higher computational cost (NLP)

4

0

36

72

108

144

180

2017 2018 2020 2021

NLP model size is increasing exponentially

GPT
0.11B

MegatronLM
8.3B

T-NLG
17BGPT-2

1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

 B
ill

io
n)

Year

BERT
0.34BTransformer

0.05B

GPT-3
170B

Figures from Microsoft Turing Project

175 Billion model parameters

8 Million web pages

3 Million GPU hours*

*Measured on Nvidia A100

System-Algorithm Co-Design for TinyML

Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

5

data

prediction

• Data uploaded to the cloud for inference/training
Cloud AI

GPUs/TPUs
ResNet

System-Algorithm Co-Design for TinyML

Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

6

Cloud AI Mobile AI

GPUs/TPUs
ResNet

Smartphones
MobileNet

System-Algorithm Co-Design for TinyML

Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

7

Cloud AI Mobile AI

?
GPUs/TPUs

ResNet
Smartphones

MobileNet

System-Algorithm Co-Design for TinyML

Deep Learning Going “Tiny”
Cloud → Mobile → Tiny

8

Cloud AI Mobile AI Tiny AI

GPUs/TPUs
ResNet

Smartphones
MobileNet

IoT/Microcontrollers
MCUNet

System-Algorithm Co-Design for TinyML

Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon

9

#U
ni

ts

(B
illi

on
)

0

20

40

12 14 16F18F

Ubiquitous Low-cost

($0.1 - $10)

Low-power

(mW)

System-Algorithm Co-Design for TinyML

Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon

• Various applications

10

Personalized Healthcare

…

Smart Manufacturing Precise AgricultureSmart Home

System-Algorithm Co-Design for TinyML

TinyML is Challenging
Memory size is too small to hold DNNs

11

* =
input

activation kernel output

activation

SRAM

Memory

DRAM/Flash

Storage

• Memory usage of a conv net

System-Algorithm Co-Design for TinyML

TinyML is Challenging
Memory size is too small to hold DNNs

12

Cloud AI Mobile AI

Memory (Activation)

Storage (Weights)

4GB

256GB~TB/PB

32GB

System-Algorithm Co-Design for TinyML

TinyML is Challenging
Memory size is too small to hold DNNs

13

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights)

32GB 4GB

256GB

320kB

1MB~TB/PB

System-Algorithm Co-Design for TinyML

TinyML is Challenging
Memory size is too small to hold DNNs

14

Cloud AI Mobile AI Tiny AI

Memory (Activation)

Storage (Weights) ~TB/PB

4GB

256GB

320kB

1MB13,000x
smaller

100,000x
smaller

32GB

System-Algorithm Co-Design for TinyML

Today’s CNNs are Too Big for TinyML
Cloud/Mobile CNNs cannot fit tinyML

15

ResNet-50

MobileNetV2

MobileNetV2 (int8)

0 2000 4000 6000 8000320kB
constraint

Peak Memory (kB)

22x

23x

5x

Toy applications

System-Algorithm Co-Design for TinyML

Today’s CNNs are Too Big for TinyML
Cloud/Mobile CNNs cannot fit tinyML

16

ResNet-50

MobileNetV2

MobileNetV2 (int8)

0 2000 4000 6000 8000320kB
constraint

Peak Memory (kB)

22x

23x

5x

Toy applications

TinyML

Real-life applications

System-Algorithm Co-Design for TinyML

TinyML is Challenging
We need to reduce both weight and activation

17

0

2.4

4.8

7.2

9.6

12

Param (MB) Peak Activation (MB)

ResNet-18 MobileNetV2-0.75 MCUNet
~70% ImageNet Top-1

4.6x

1.8x

(calculated in INT8)

System-Algorithm Co-Design for TinyML

TinyML is Challenging
We need to reduce both weight and activation

18

0

2.4

4.8

7.2

9.6

12

Param (MB) Peak Activation (MB)

ResNet-18 MobileNetV2-0.75 MCUNet

6.1x

3.4x

~70% ImageNet Top-1

(calculated in INT8)

System-Algorithm Co-Design for TinyML

Overview

19

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

MCUNetV1
Tiny Image Recognition

MCUNetV2
Higher Resolution for Object

detection, etc.

MCUNetV3
Tiny On-Device Training

System-Algorithm Co-Design for TinyML

Overview

20

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

MCUNetV1
Tiny Image Recognition

MCUNetV2
Higher Resolution for Object

detection, etc.

MCUNetV3
Tiny On-Device Training Training

Inference

System-Algorithm Co-Design for TinyML

Overview

21

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

MCUNetV1
Tiny Image Recognition

MCUNetV2
Higher Resolution for Object

detection, etc.

MCUNetV3
Tiny On-Device Training

System Algorithm

Co-design

MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu

Tiny Inference

22

- MCUNetV1
- MCUNetV2

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

https://mcunet.mit.edu

System-Algorithm Co-Design for TinyML

MCUNet: System-Algorithm Co-design

23
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning [Chen et al., OSDI 2018]

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

LibraryNAS LibraryNN Model

System-Algorithm Co-Design for TinyML

MCUNet: System-Algorithm Co-design

24

TinyEngineTinyNAS

Efficient Compiler / Runtime

Efficient Neural Architecture

LibraryNN Model

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

(c) MCUNet: system-algorithm co-design

MCUNet

LibraryNAS

System-Algorithm Co-Design for TinyML

TinyEngine: A Memory-Efficient Inference Library

25

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

3.4x smaller
In-place depth-wise

Million MAC/s ↑

1.6x faster
Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling

Million MAC/s ↑
0 64 7052 75 79 82

adsfas

System-Algorithm Co-Design for TinyML

TinyEngine: A Memory-Efficient Inference Library

26

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

3.4x smaller
In-place depth-wise

Million MAC/s ↑

1.6x faster
Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling

Million MAC/s ↑
0 64 7052 75 79 82

adsfas

0%

25%

50%

75%

100% 1.001.001.001.00

0.61
0.660.64

0.94

0.82

0.320.330.320.33

TF-Lite Micro MicroTVM Tuned CMSIS-NN TinyEngine

SmallCifar MobileNetV2 ProxylessNAS MnasNet

Normalized Speed↑

1.6x

faster

3x  
faster

3x  
faster

3x  
faster

3x  
faster

1.5x

faster

1.6x

faster

O
O

M

O
O

M

O
O

M

Peak Mem (KB)↓

0

46

92

138

184

230

84

41
65

46

228

197
217

67

144

216

161

211

64

SmallCifar MobileNetV2 ProxylessNAS MnasNet

3.1x  
smaller

4.8x  
smaller

O
O

M

2.7x  
smaller3.3x  

smaller

O
O

M

O
O

M

System-Algorithm Co-Design for TinyML

Tiny Image Classification
ImageNet-level image classification
• With techniques like MCUNet, we are able to achieve ImageNet-level image classification

performance on microcontrollers (int4 quantization)

27
MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2019]

50

55

60

65

70

75

53.8

70.7

65.9
63.562.0

ImageNet Top-1 Accuracy (%)

STM32F412

(256kB/1MB)

STM32F746

(320kB/1MB)

STM32F765

(512kB/1MB)

STM32H743

(512kB/2MB)

The first to achieve >70%
ImageNet accuracy on
commercial MCUs

MobileNetV2+CMSIS-NN

+17%

70% milestone:
ResNet

MobileNetV2

MCUNet

System-Algorithm Co-Design for TinyML

MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Memory saving for MobileNetV2

28
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B) Peak Mem

1372kB

High
mem.

Low
mem.

256kB constraint of MCU

per-layer inference peak mem: 1372kB

System-Algorithm Co-Design for TinyML

MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Memory saving for MobileNetV2

29
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B) Org peak
mem.

High
mem.

Low
mem.

256kB constraint of MCU

New peak
mem.

8×

larger

per-patch inference peak mem: 172kBper-layer inference

System-Algorithm Co-Design for TinyML

MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Memory saving for other models

• Baseline: TinyEngine. Measured on STM32F746

30
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

0

64

128

192

256

320

56
76

5164
85

132

94
113

234

310300
315

Per-layer Per-patch (2x2) Per-patch (3x3)

FBNet-A MCUNetMbV2-RDMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

Measured Peak SRAM (kB)

4.9x
smaller 5.9x

smaller

4.1x
smaller

4.2x
smaller

System-Algorithm Co-Design for TinyML

In memory

conv1

s=1

conv2

s=2

conv1

s=1

conv2

s=2

• a practical 2-layer example

per-layer inference

MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Break the memory bottleneck with patch-based inference

31MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu 52
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

https://mcunet.mit.edu

System-Algorithm Co-Design for TinyML
In memory

conv1

s=1

conv2

s=2

conv1

s=1

conv2

s=2

• a practical 2-layer example

per-layer inference per-patch inference

*need to hold entire output

(much smaller than previous layers)

• a practical 2-layer example

MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Break the memory bottleneck with patch-based inference

32MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu 53
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

In memory

https://mcunet.mit.edu

System-Algorithm Co-Design for TinyML

MCUNetV2: Patch-based Inference
2. Joint Automated Search for Optimization

33

…

Neural architecture
#layers

#channels

kernel size

…

Inference scheduling
#patches

#layers for patch-based

other knobs from

TinyEngine

…

…

MCUNetV2

System-Algorithm Co-Design for TinyML

MCUNetV2: Patch-based Inference
Visual Wake Words under 32KB memory
• Higher accuracy, 4x lower SRAM

34

0

30

60

90

120

30

119

MCUNet MCUNetV2

4x
smaller

Peak SRAM (kB) @ 90%

System-Algorithm Co-Design for TinyML

MCUNetV2: Patch-based Inference
Advancing object detection by allowing a larger resolution
• Resolution is more important for detection than classification

• Our method significantly improves objection detection by double digits

35

System-Algorithm Co-Design for TinyML

MCUNetV2: Patch-based Inference
Advancing object detection by allowing a larger resolution

36

Face/mask detection Person detection

System-Algorithm Co-Design for TinyML

Tiny On-Device Training

37

- Sparse Update
- Tiny Training Engine (TTE)

On-Device Training Under 256KB SRAM [Lin et al., NeurIPS 2022]

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Can We Learn on the Edge?

●On-device learning:

●customization by adapting to user data / life-long learning

●better privacy, lower cost

38

User Intelligent Edge Devices

New and Sensitive
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

From tinyML inference to training

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Can We Learn on the Edge?

●On-device learning:

●customization by adapting to user data / life-long learning

●better privacy, lower cost

39

From tinyML inference to training

A virtuous cycle:

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Can We Learn on the Edge?

40

From tinyML inference to training

A virtuous cycle:

●On-device learning:

●customization by adapting to user data / life-long learning

●better privacy, lower cost

●Training is more expensive than inference

●For example, store intermediate activation, extra back-propagation, etc.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

41

0

125

250

375

500
452

20

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 8

MCU: 256KB SRAM

Raspberry Pi 1 DRAM
256MB

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

• Edge devices have tight memory constraints. The training memory footprint of neural networks
can easily exceed the limit.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

42

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

43

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

44

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

45

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

46

(a) Fake Quantization  
(quantization aware training)

Most intermediate tensors are still in FP32 format in fake quantization,

thus cannot save memory footprint

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

✓

1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

47

(b) Real Quantization  
(inference/on-device training)

(a) Fake Quantization  
(quantization aware training)

All tensors are in int8/int32 format for real quantization,

thus save memory footprint, but leading to optimization difficulty

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
Quantized graphs save memory, but are hard to quantize

48

Making training difficult:
• Mixed precisions: int8/int32/fp32…
• Lack BatchNorm

75.4

86.0

Performance Comparison (average on 10 datasets)

10.6%
top-1↓

To
p-

1
A

cc
ur

ac
y

(%
)

FP32
SGD

Int8
SGD

(a) Real Quantization

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
Quantization leads to distorted gradient magnitudes

49

- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real
quantized training!

-5

5

15

25

35
fp32 int8

Tensor Index

lo
g 1

0(
∥W

∥/
∥G

∥)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Quantization overview

Per Channel scaling

Weight and gradient ratios are off by S−2
W

Thus, re-scale the gradients

QAS addresses the optimization difficulty of quantized graphs

50

1. Quantization-Aware Scaling (QAS)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

-5

5

15

25

35
fp32 int8 int8+QAS

Tensor Index

lo
g 1

0(
∥W

∥/
∥G

∥)

QAS aligns the W/G
ratio with fp32

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

51

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

52

Without QAS, poor convergence

With QAS, better convergence

After applying QAS, the convergence of real quantized is stable.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

86.9
84.5

64.8

75.4

86.0

Extra memory
(3x)

To
p-

1
A

cc
ur

ac
y

(%
)

FP32 SGD Int8 SGD Int8 LARS Int8 Adam Int8 QAS
(ours)

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

53

Improve
accuracy

QAS improves the accuracy over naive int8 training, and shows
no inferior performance than fp32 results.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

54

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

55
TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

Forward:

Backward:

Answer: Because of intermediate activations

• Inference does not need to store activations, training does.

• Activations grows linearly with batch size, which is always 1 for inference.

• Even with bs=1, activations are usually larger than model weights.

Question: Why training memory is much larger than inference?

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

56

• Activation is the main bottleneck for on-device learning, not parameters.

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

6.9x larger

Activation is the
main bottleneck,
not parameters.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Training Memory is the Key Bottleneck

57

• Activation is the main bottleneck for on-device learning, not parameters.
• Previous methods focus on reducing the number of parameters or

FLOPs, while the main bottleneck does not improve much.

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does
not improve much.

6.9x larger

Activation is the
main bottleneck,
not parameters.

4.3x

1.1x

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Full update

58

Updating the whole model is too expensive:
• Need to save all intermediate activation (quite large)
• Need to store the updated weights in SRAM (Flash is read-only)

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FCweights
biases

Model: ProxylessNAS-Mobile

0 MB

10 MB

20 MB

30 MB

#Trainable Param (M)
50
59
68
77
86
95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Far beyond the on-device
learning capacity

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Last layer update

59

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Updating only the last cheap
• No need to back propagating to previous layers
• But the accuracy is low and not ideal.

Model: ProxylessNAS-Mobile

weights
biases

0

10

20

30

#Trainable Param (M)

13x

50
59
68
77
86
95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Significant
accuracy

 degradation!

Far beyond the on-
device learning

capacity

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Bias-only update

60

Updating the only the bias part
• No need to store the activations
• Back propagating to the first layer.

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Model: ProxylessNAS-Mobile

dW = f(X, dY)
db = f(dY)

0

10

20

30

#Trainable Param (M)
50
59
68
77
86
95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

12x

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Updated synapses are sparse

61
Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013]

[2]

Data Source: 1, 2Do We Have Brain to Spare? [Drachman DA, Neurology 2004]
Slide Inspiration: Alila Medical Media

Time
Newborn 2-4 years old AdultAdolescence

2500 synapses
per neuron

15000 synapses
per neuron

7000 synapses
per neuron

[1]

[1]

K-12 education

Synapses are getting "sparse"

https://tinytraining.mit.edu
https://n.neurology.org/content/64/12/2004
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

62

Updating the sparse tensors / layers
• Some layers are more important than others

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

-4%
-1%
2%
5%
8%

11%
14%

0 5 10 15 20 25 30 35 40

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e

ac
c.

 g
ai

n

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

63

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

Reduce by 4x
Activation to store: (N, M)

Weight in SRAM: (M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (N, 0.25*M)

Weight in SRAM: (0.25*M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

Updating the sparse tensors / layers
• Some layers are more important than others
• No need to back propagate the early layers
• Only need to store a subset of the activations.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

64

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

69

71

73

75

77

40 155 270 385 500

update last k biases update last k layers sparse update (ours)

(a) MCUNet-5FPS

A
ve

ra
ge

 A
cc

 (%
)

Extra Memory (KB)

64

66

68

70

72

40 110 180 250 320

(b) MbV2-w0.35
Extra Memory (KB)

(c) Proxyless-w0.3
Extra Memory (KB)

65

67

69

71

73

75

40 110 180 250 320

4.5× smaller
higher acc

7.5× smaller

≤50kB

≤75kB

≤100kB
≤150kB

545

Add the full network accuracy here (deprecated)

upper
bound

524

7.1× smaller
upper
bound upper

bound

64

66

68

70

72

74

76

78

40 155 270 385 500

(c) MCUNet-5FPS

A
ve

ra
ge

 A
cc

 (%
)

Extra Memory (KB)

(a) MbV2-w0.35
Extra Memory (KB)

(b) Proxyless-w0.3
Extra Memory (KB)

60

63

66

69

72

75

40 110 180 250 320

4.5× smaller
higher acc upper

bound

524

7.1× smaller
upper
bound

swap order and add fc-only results

59
61
63
65
67
69
71
73

40 110 180 250 320

update last k biases update last k layers sparse update (ours) Untitled 1

7.5× smaller

545

≤50kB

≤75kB
≤100kB ≤150kB

classifier only accuracy

upper
bound

classifier only accuracy classifier only accuracy

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Update Paradigms Comparison

65

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

FC

(a) Full update

(b) Last-only update

(c) Bias-only update

(d) Sparse layer/Sparse tensor update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

On-Device Training Under 256KB Memory

66

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 67
+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x 2300x

3. Tiny Training Engine (TTE)
Existing frameworks cannot fit
• Runtime is heavy

• Heavy dependencies and large binary size (>100MB static memory)

• Auto-diff at runtime; low edge efficiency

• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 68

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

Data Weight

MatMul

Out

1. Computation Graph
(forward)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 69

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

f(x) → f′ (x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

1. Computation Graph
(forward)

2. AutoDiff

3. Computation Graph
(backward)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 70

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

f(x) → f′ (x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution
Engine

1. Computation Graph
(forward)

2. AutoDiff

3. Computation Graph
(backward)

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

71

1. Computation Graph
(forward)

2. AutoDiff

f(x) → f′ (x)

3. Computation Graph
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution
Engine

Conventional training framework focus on flexibility,

and the auto-diff is performed at runtime.

Thus, any optimizations will lead to runtime overhead.: Runtime

: Compile-Time

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
TTE: Move workload from runtime to compile time

72

TTE moves most workload from runtime to compile-time,

thus minimizes the runtime overhead,

also enables opportunities for extensive graph optimizations.
: Runtime

: Compile-Time

1. Computation Graph
(forward)

2. AutoDiff

f(x) → f′ (x)

3. Computation Graph
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution
Engine

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Enable graph optimizations (backward pruning, reordering, etc.)

73

Forward graph

Autodiff and run

X Pred

Feed data and execute

GraddX

 …

g1, . . . gn = backward(L, W)
w1 = w1 − ηg1
w2 = w2 − ηg2

wn = wn − ηgn

Apply gradient step

: Runtime

: Compile-Time

Conventional training framework performs most tasks at runtime.

5

1 2

3

4

Forward graph

Backward graph

Autodiff

…

gn = backward(loss)
wn = wn − ηgn
gn−1 = backward(gn)
wn−1 = wn−1 − ηgn−1

Compute and in-place UpdateSparse update Fusion and reorder

- FWD Graph
- Optimized BWD Graph
- Gradient Step Graph

Code Generation

Tiny Training Engine (ours) separate the environment of runtime and compile time.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

74

fn (%x: Tensor[(10, 10), float32],
 %weight: Tensor[(10, 10), float32],
 %bias: Tensor[(10), float32]),
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad);
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

====> dy / dx

====> dy / dw
====> dy / db

Example from a matrix
multiplication with full update

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

75

fn (%x: Tensor[(10, 10), float32, needs_grad=True],
 %weight: Tensor[(10, 10), float32, needs_grad=False],
 %bias: Tensor[(10), float32, needs_grad=True],
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad);
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

Annotate whether a tensor  
requires gradient or not

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

76

fn (%x: Tensor[(10, 10), float32, needs_grad=True],
 %weight: Tensor[(10, 10), float32, needs_grad=False],
 %bias: Tensor[(10), float32, needs_grad=True],
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad);
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

Remove unnecessary computations
from DAG via dependency analysis

and dead-code elimination.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

77

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

Freely annotate ANY parameters

TTE will trim the computation accordingly.

fn (%x: Tensor[(10, 10), float32, needs_grad=False],
 %weight1: Tensor[(10, 10), needs_grad=False],
 %bias1: Tensor[(10), needs_grad=False],
 %weight2: Tensor[(10, 10), needs_grad=True],
 %bias2: Tensor[(10), needs_grad=True],
 …………
 %grad: .., float32]),
{
 # …
}

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

78

Automatically remove
the buffers of pruned

gradients from the
computation graph.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

fn (%x: Tensor[(10, 10), float32],
 %weight: Tensor[(10, 10), float32],
 %bias: Tensor[(10), float32]),
 %grad: Tensor[(10), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad)
 %5 = multiply(%4, %x);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

fn (%x: Tensor[(10, 10), float32, needs_grad=True],
 %weight: Tensor[(20, 10), float32, needs_grad=0.5],
 %bias: Tensor[(20), float32, needs_grad=True],
 %grad: Tensor[(10, 20), float32]),
{
 # forward
 %0 = multiply(%x, %weight);
 %0.1 = slice(%x, begin=[0, 0], ends=[10, 10]);
 %1 = add(%0, %bias);
 # backward
 %3 = multiply(%grad, %weight);
 %4 = transpose(%grad)
 %5 = multiply(%4, %0.1);
 %6 = sum(%grad, axis=-1);
 (%3, %5, %6)
}

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

79

Sparse update results

• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory

saving

sparse update

Pe
ak

 M
em

 (K
B

)↓

0

1000

2000

3000

4000

560
326335

3,650

2,745
2,939

8.7x
smaller

full update

6.5x
smaller

8.4x
smaller

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

80

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

81

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

82

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

83

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

84

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

85

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

86

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

87

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

88

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

89

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

90

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

91

Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

92

Re-ordering reduces memory footprint

Operator life-cycle analysis reveals the memory
redundancy in the optimization step.

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3Memory waste!

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

93

Re-ordering reduces memory footprint

Operator life-cycle analysis reveals the memory
redundancy in the optimization step.

(a) Conventional way to update parameters (b) Operator re-ordering

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3Memory waste!

F0

F1

F2

F3

B0

B1

B3

U0

U1

U3

B2

Immediately released
U2

After re-ordering, the redundant memory
usage is eliminated from training.

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Re-ordering reduces memory footprint

94

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.

https://tinytraining.mit.edu

On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)
Smaller memory usage, faster training speed

95

20x smaller memory 23x faster speed

https://tinytraining.mit.edu

On-Device Training Demo

https://www.bilibili.com/video/BV1qv4y1d7MV/ https://youtu.be/XaDCO8YtmBw

https://www.bilibili.com/video/BV1qv4y1d7MV/
https://youtu.be/XaDCO8YtmBw

System-Algorithm Co-Design for TinyML

Media Report

97

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

(Homepage highlight) (Homepage highlight)

On-Device Training Under 256KB Memory https://tinytraining.mit.edu 98

Open Source

Sign up here to get updates!

https://forms.gle/UW1uUmnfk1k6UJPPA

https://tinytraining.mit.edu
https://forms.gle/UW1uUmnfk1k6UJPPA

Song Han: Efficient Deep Learning Computing with Sparsity

Our Publications on Efficient Deep Learning Computing
https://hanlab.mit.edu/

1. Learning both Weights and
Connections for Efficient
Neural Network, NeurIPS’15

2. Deep Compression, ICLR’16
3. AMC, ECCV’18
4. ProxylessNAS, ICLR’19
5. Once For All, ICLR’20
6. HAT, ACL’20
7. Anycost GAN, CVPR’21
8. SPVNAS, ECCV’21
9. Lite Pose, CVPR’22
10. NAAS, DAC’21
11. QuantumNAS, HPCA’22
12. QuantumNAT, DAC’22
13. QOC, DAC’22

14. MCUNet, NeurIPS’20
15. MCUNet-V2, NeurIPS’21
16. TinyTL, NeurIPS’20
17. MCUNet-V3, Arxiv’22
18. DGC, ICLR’18
19. DGA, NeurIPS’21
20. PVCNN, NeurIPS’19
21. Fast-LiDARNet, ICRA’21
22. BEVFusion, Arxiv’22
23. TSM, ICCV’19
24. GAN Compression, CVPR’20
25. SpAtten, HPCA’21
26. SpArch, HPCA’20
27. PointAcc, Micro’20
28. TorchSparse, SysML’22

99

HardwareSoftware

Inference

Training

Dense

Sparse

Tiny Models

Big Foundation
Models

Single
Sensor

Multi-Sensor
Fusion

Classic

Quantum

http://hanlab.mit.edu
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1510.00149
https://hanlab.mit.edu/projects/amc/
https://hanlab.mit.edu/projects/proxylessNAS/
https://hanlab.mit.edu/projects/ofa
https://hat.mit.edu/
https://hanlab.mit.edu/projects/anycost-gan/
https://spvnas.mit.edu/
https://github.com/mit-han-lab/litepose
https://hanlab.mit.edu/projects/naas
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/tinyTL/
https://arxiv.org/abs/2206.15472
https://github.com/synxlin/deep-gradient-compression
https://dga.hanlab.ai/
http://pvcnn.mit.edu/
https://hanlab.mit.edu/projects/spvnas/
https://arxiv.org/abs/2205.13542
https://hanlab.mit.edu/projects/tsm/
https://hanlab.mit.edu/projects/gancompression
https://spatten.mit.edu/
https://sparch.mit.edu/
http://hanlab.mit.edu/projects/pointacc
https://torchsparse.mit.edu/

Song Han: Efficient Deep Learning Computing with Sparsity

New Course: TinyML and Efficient Deep Learning Computing
MIT 6.S965: https://efficientml.ai

• This course is a deep dive into efficient machine learning
techniques that enable powerful deep learning applications on
resource-constrained devices.

100

Anonymous Student Feedback Collected from Mid-term

https://efficientml.ai

