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System-Algorithm Co-Design for TinyML

Brief Bio
● MIT EECS Ph.D. #3rd year, supervisor: Song Han


● Obtained B.Sc from Zhejiang University and Simon Fraser University in 2019.


● Research interests include efficient deep learning algorithms and systems.


● Enthusiastic about open source 


● Projects collects >7k stars / Contributed to pytorch, tvm, horovod, mmdetection


● Previous work integrated into PyTorch, AutoGluon, adapted by Sony, Intel, Amazon
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Today’s AI is growing tooooo BIG
Better model always comes with higher computational cost (vision)
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Today’s AI is growing tooooo BIG
Better model always comes with higher computational cost (NLP)
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Deep Learning Going “Tiny”
Cloud → Mobile → Tiny
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data

prediction

• Data uploaded to the cloud for inference/training
Cloud AI

GPUs/TPUs 
ResNet
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Deep Learning Going “Tiny”
Cloud → Mobile → Tiny
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Deep Learning Going “Tiny”
Cloud → Mobile → Tiny
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Deep Learning Going “Tiny”
Cloud → Mobile → Tiny
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Cloud AI Mobile AI Tiny AI

GPUs/TPUs 
ResNet

Smartphones 
MobileNet

IoT/Microcontrollers 
MCUNet
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Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon
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Deep Learning Going “Tiny”
Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers

• Low-cost: low-income people can afford access. Democratize AI.

• Low-power: green AI, reduce carbon

• Various applications
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Personalized Healthcare

…

Smart Manufacturing Precise AgricultureSmart Home
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TinyML is Challenging
Memory size is too small to hold DNNs
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* =
input


activation kernel output

activation

SRAM

Memory

DRAM/Flash

Storage

• Memory usage of a conv net
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TinyML is Challenging
Memory size is too small to hold DNNs
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TinyML is Challenging
Memory size is too small to hold DNNs
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Memory (Activation)
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TinyML is Challenging
Memory size is too small to hold DNNs
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Today’s CNNs are Too Big for TinyML
Cloud/Mobile CNNs cannot fit tinyML
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Today’s CNNs are Too Big for TinyML
Cloud/Mobile CNNs cannot fit tinyML
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ResNet-50

MobileNetV2

MobileNetV2 (int8)

0 2000 4000 6000 8000320kB 
constraint

Peak Memory (kB)

22x

23x

5x

Toy applications

TinyML

Real-life applications
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TinyML is Challenging
We need to reduce both weight and activation
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TinyML is Challenging
We need to reduce both weight and activation
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Overview

19

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

MCUNetV1 
Tiny Image Recognition

MCUNetV2 
Higher Resolution for Object 

detection, etc.

MCUNetV3 
Tiny On-Device Training
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Overview
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MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

MCUNetV1 
Tiny Image Recognition

MCUNetV2 
Higher Resolution for Object 

detection, etc.

MCUNetV3 
Tiny On-Device Training Training

Inference
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Overview

21

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

MCUNetV1 
Tiny Image Recognition

MCUNetV2 
Higher Resolution for Object 

detection, etc.

MCUNetV3 
Tiny On-Device Training

System Algorithm

Co-design
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Tiny Inference

22

- MCUNetV1 
- MCUNetV2

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

https://mcunet.mit.edu
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MCUNet: System-Algorithm Co-design 

23
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning [Chen et al., OSDI 2018] 

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

LibraryNAS LibraryNN Model
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MCUNet: System-Algorithm Co-design 

24

TinyEngineTinyNAS

Efficient Compiler / Runtime

Efficient Neural Architecture

LibraryNN Model

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

(c) MCUNet: system-algorithm co-design

MCUNet

LibraryNAS
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TinyEngine: A Memory-Efficient Inference Library 

25

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN
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In-place depth-wise
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1.6x faster
Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling
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TinyEngine: A Memory-Efficient Inference Library 
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Code generation
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Tiny Image Classification
ImageNet-level image classification 
• With techniques like MCUNet, we are able to achieve ImageNet-level image classification 

performance on microcontrollers (int4 quantization)

27
MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2019]
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MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Memory saving for MobileNetV2

28
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]
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MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Memory saving for MobileNetV2

29
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]
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MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Memory saving for other models

• Baseline: TinyEngine. Measured on STM32F746

30
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]
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In memory

conv1

s=1

conv2

s=2

conv1

s=1

conv2

s=2

• a practical 2-layer example

per-layer inference

MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Break the memory bottleneck with patch-based inference

31MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu 52
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

https://mcunet.mit.edu
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In memory

conv1

s=1

conv2

s=2

conv1

s=1

conv2

s=2

• a practical 2-layer example

per-layer inference per-patch inference

*need to hold entire output

(much smaller than previous layers)


• a practical 2-layer example

MCUNetV2: Patch-based Inference
1. Saving Memory with Patch-based Inference
• Break the memory bottleneck with patch-based inference

32MCUNet: System-Algorithm Co-Design for TinyML https://mcunet.mit.edu 53
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]

In memory

https://mcunet.mit.edu
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MCUNetV2: Patch-based Inference
2. Joint Automated Search for Optimization

33

…

Neural architecture 
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Inference scheduling 
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TinyEngine
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MCUNetV2: Patch-based Inference
Visual Wake Words under 32KB memory
• Higher accuracy, 4x lower SRAM

34
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MCUNetV2: Patch-based Inference
Advancing object detection by allowing a larger resolution
• Resolution is more important for detection than classification

• Our method significantly improves objection detection by double digits

35
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MCUNetV2: Patch-based Inference
Advancing object detection by allowing a larger resolution

36

Face/mask detection Person detection
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Tiny On-Device Training

37

- Sparse Update 
- Tiny Training Engine (TTE)

On-Device Training Under 256KB SRAM [Lin et al., NeurIPS 2022]
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Can We Learn on the Edge?

●On-device learning: 

●customization by adapting to user data / life-long learning

●better privacy, lower cost

38

User Intelligent Edge Devices

New and Sensitive 
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

From tinyML inference to training

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu

Can We Learn on the Edge?

●On-device learning: 

●customization by adapting to user data / life-long learning

●better privacy, lower cost

39

From tinyML inference to training

A virtuous cycle:

https://tinytraining.mit.edu
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Can We Learn on the Edge?

40

From tinyML inference to training

A virtuous cycle:

●On-device learning: 

●customization by adapting to user data / life-long learning

●better privacy, lower cost


●Training is more expensive than inference

●For example, store intermediate activation, extra back-propagation, etc.

https://tinytraining.mit.edu
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Training Memory is the Key Bottleneck

41
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TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

• Edge devices have tight memory constraints. The training memory footprint of neural networks 
can easily exceed the limit. 

https://tinytraining.mit.edu
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On-Device Training Under 256KB Memory

42

• Training is more expensive than inference due to back-propagation, making it hard to fit IoT 
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x

2300x

https://tinytraining.mit.edu
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On-Device Training Under 256KB Memory
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• Training is more expensive than inference due to back-propagation, making it hard to fit IoT 
devices (e.g., MCU only has 256KB SRAM).

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB
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On-Device Training Under 256KB Memory

44

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine

https://tinytraining.mit.edu
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On-Device Training Under 256KB Memory

45

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine

https://tinytraining.mit.edu
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1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

46

(a) Fake Quantization  
(quantization aware training)

Most intermediate tensors are still in FP32 format in fake quantization, 

thus cannot save memory footprint

https://tinytraining.mit.edu
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✓

1. Quantization-Aware Scaling (QAS)
Real quantized graphs save memory, but are hard to quantize

47

(b) Real Quantization  
(inference/on-device training)

(a) Fake Quantization  
(quantization aware training)

All tensors are in int8/int32 format for real quantization, 

thus save memory footprint, but leading to optimization difficulty

https://tinytraining.mit.edu
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1. Quantization-Aware Scaling (QAS)
Quantized graphs save memory, but are hard to quantize

48

Making training difficult: 
• Mixed precisions: int8/int32/fp32… 
• Lack BatchNorm
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Performance Comparison (average on 10 datasets)
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(a) Real Quantization

https://tinytraining.mit.edu
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1. Quantization-Aware Scaling (QAS)
Quantization leads to distorted gradient magnitudes

49

- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real 
quantized training!
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https://tinytraining.mit.edu
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Quantization overview

Per Channel scaling 

Weight and gradient ratios are off  by S−2
W

Thus, re-scale the gradients

QAS addresses the optimization difficulty of quantized graphs

50

1. Quantization-Aware Scaling (QAS)

https://tinytraining.mit.edu
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QAS aligns the W/G 
ratio with fp32

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

51
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1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

52

Without QAS, poor convergence

With QAS, better convergence

After applying QAS, the convergence of real quantized is stable.

https://tinytraining.mit.edu
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86.9
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64.8
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Extra memory 
(3x)
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FP32 SGD Int8 SGD Int8 LARS Int8 Adam Int8 QAS  
(ours)

1. Quantization-Aware Scaling (QAS)
QAS addresses the optimization difficulty of quantized graphs

53

Improve 
accuracy

QAS improves the accuracy over naive int8 training, and shows 
no inferior performance than fp32 results.

https://tinytraining.mit.edu
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On-Device Training Under 256KB Memory

54

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine

https://tinytraining.mit.edu
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Training Memory is the Key Bottleneck

55
TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

Forward: 

Backward: 

Answer: Because of intermediate activations

• Inference does not need to store activations, training does.


• Activations grows linearly with batch size, which is always 1 for inference.


• Even with bs=1, activations are usually larger than model weights.

Question: Why training memory is much larger than inference?

https://tinytraining.mit.edu
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Training Memory is the Key Bottleneck

56

• Activation is the main bottleneck for on-device learning, not parameters. 
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Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

6.9x larger

Activation is the 
main bottleneck, 
not parameters.

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu
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Training Memory is the Key Bottleneck

57

• Activation is the main bottleneck for on-device learning, not parameters. 
• Previous methods focus on reducing the number of parameters or 

FLOPs, while the main bottleneck does not improve much. 
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Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does 
not improve much.

6.9x larger

Activation is the 
main bottleneck, 
not parameters.

4.3x

1.1x

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

https://tinytraining.mit.edu
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2. Sparse Layer/Tensor Update
Full update

58

Updating the whole model is too expensive: 
• Need to save all intermediate activation (quite large) 
• Need to store the updated weights in SRAM (Flash is read-only)

M
B

1 
3x

3 
 

M
B

3 
5x

5 
 

M
B

3 
3x

3 
 

M
B

3 
7x

7 

M
B

3 
3x

3 
 

M
B

3 
5x

5 
 

M
B

3 
5x

5 
 

M
B

6 
7x

7 
 

M
B

3 
5x

5 
 

M
B

3 
5x

5 
 

M
B

6 
5x

5 
 

M
B

3 
5x

5 

M
B

3 
5x

5 
 

M
B

3 
7x

7 
 

M
B

6 
7x

7 
 

M
B

3 
5x

5 
 

M
B

6 
7x

7 
 

M
B

3 
5x

5 
 

M
B

3 
7x

7 
 

M
B

6 
7x

7 
 

FCweights
biases

Model: ProxylessNAS-Mobile

0 MB

10 MB

20 MB

30 MB

#Trainable Param (M)
50
59
68
77
86
95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Far beyond the on-device 
learning capacity

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Last layer update

59
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Updating only the last cheap 
• No need to back propagating to previous layers 
• But the accuracy is low and not ideal.

Model: ProxylessNAS-Mobile

weights
biases

0
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20

30

#Trainable Param (M)

13x

50
59
68
77
86
95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

Significant 
accuracy

 degradation!

Far beyond the on-
device learning 

capacity
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2. Sparse Layer/Tensor Update
Bias-only update

60

Updating the only the bias part 
• No need to store the activations 
• Back propagating to the first layer. 
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Model: ProxylessNAS-Mobile

dW = f(X, dY) 
db = f(dY)

0

10

20

30

#Trainable Param (M)
50
59
68
77
86
95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

12x

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu

2. Sparse Layer/Tensor Update
Updated synapses are sparse

61
Peter Huttenlocher (1931–2013) [Walsh, C. A., Nature 2013]

[2]

Data Source: 1, 2Do We Have Brain to Spare? [Drachman DA, Neurology 2004]
Slide Inspiration: Alila Medical Media

Time
Newborn 2-4 years old AdultAdolescence

2500 synapses 
per neuron

15000 synapses 
per neuron

7000 synapses 
per neuron

[1]

[1]

K-12 education

Synapses are getting "sparse"

https://tinytraining.mit.edu
https://n.neurology.org/content/64/12/2004
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://n.neurology.org/content/64/12/2004
https://www.youtube.com/watch?v=0S0jKbh6R1I
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
https://extension.umaine.edu/publications/4356e/#:~:text=As%20the%20neurons%20mature,%20more,normal%20part%20of%20brain%20development.
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2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

62

Updating the sparse tensors / layers 
• Some layers are more important than others 
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Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

-4%
-1%
2%
5%
8%

11%
14%

0 5 10 15 20 25 30 35 40

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e 

ac
c.

 g
ai

n
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2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

63
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Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile

Reduce by 4x
Activation to store: (N, M)

Weight in SRAM: (M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (N, 0.25*M)

Weight in SRAM: (0.25*M, H)

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

Updating the sparse tensors / layers 
• Some layers are more important than others 
• No need to back propagate the early layers 
• Only need to store a subset of the activations. 
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2. Sparse Layer/Tensor Update
Sparse Layer/Tensor Update

64
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FC

Sparse layer backpropagation

Sparse tensor backpropagation

Backpropagation stops here
Model: ProxylessNAS-Mobile
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524

7.1× smaller
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swap order and add fc-only results

59
61
63
65
67
69
71
73

40 110 180 250 320

update last k biases update last k layers sparse update (ours) Untitled 1

7.5× smaller

545

≤50kB

≤75kB
≤100kB ≤150kB

classifier only accuracy
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Update Paradigms Comparison

65
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(a) Full update

(b) Last-only update

(c) Bias-only update

(d) Sparse layer/Sparse tensor update
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On-Device Training Under 256KB Memory

66

1. Quantization-aware 
scaling

2. Sparse layer/tensor 
update

3. Tiny Training 
Engine

https://tinytraining.mit.edu
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+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

141 KB

2.9MB

355 KB

7.3x

2.0x

8.8x

2.4x 2300x

3. Tiny Training Engine (TTE)
Existing frameworks cannot fit
• Runtime is heavy


• Heavy dependencies and large binary size (>100MB static memory)

• Auto-diff at runtime; low edge efficiency


• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)
Workflow of conventional training engine

Data Weight

MatMul

Out

1. Computation Graph 
(forward)

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu 69

3. Tiny Training Engine (TTE)
Workflow of conventional training engine

f(x) → f′ (x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

1. Computation Graph 
(forward)

2. AutoDiff

3. Computation Graph 
(backward)

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)
Workflow of conventional training engine

f(x) → f′ (x)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution  
Engine

1. Computation Graph 
(forward)

2. AutoDiff

3. Computation Graph 
(backward)

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)
Workflow of conventional training engine

71

1. Computation Graph 
(forward)

2. AutoDiff

f(x) → f′ (x)

3. Computation Graph 
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution  
Engine

Conventional training framework focus on flexibility, 

and the auto-diff is performed at runtime.


Thus, any optimizations will lead to runtime overhead.: Runtime

: Compile-Time

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)
TTE: Move workload from runtime to compile time

72

TTE moves most workload from runtime to compile-time,

thus minimizes the runtime overhead,


also enables opportunities for extensive graph optimizations.
: Runtime

: Compile-Time

1. Computation Graph 
(forward)

2. AutoDiff

f(x) → f′ (x)

3. Computation Graph 
(backward)

Data Weight

MatMul

Out

MatMul’

grad

dy/dx dy/dw

4. Execution  
Engine

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)
Enable graph optimizations (backward pruning, reordering, etc.)

73

Forward graph

Autodiff and run

X Pred

Feed data and execute

GraddX

 
 
 

 … 

g1, . . . gn = backward(L, W )
w1 = w1 − ηg1
w2 = w2 − ηg2

wn = wn − ηgn

Apply gradient step

: Runtime

: Compile-Time

Conventional training framework performs most tasks at runtime. 

5

1 2

3

4

Forward graph

Backward graph

Autodiff
 

 
 
 

…

gn = backward(loss)
wn = wn − ηgn
gn−1 = backward(gn)
wn−1 = wn−1 − ηgn−1

Compute and in-place UpdateSparse update Fusion and reorder

- FWD Graph
- Optimized BWD Graph
- Gradient Step Graph

Code Generation

Tiny Training Engine (ours) separate the environment of runtime and compile time.

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

74

fn (%x: Tensor[(10, 10), float32], 
    %weight: Tensor[(10, 10), float32], 
    %bias: Tensor[(10), float32]),
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad);
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

====> dy / dx

====> dy / dw
====> dy / db

Example from a matrix 
multiplication with full update

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

75

fn (%x: Tensor[(10, 10), float32, needs_grad=True], 
    %weight: Tensor[(10, 10), float32, needs_grad=False], 
    %bias: Tensor[(10), float32, needs_grad=True],
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad);
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

Annotate whether a tensor  
requires gradient or not

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

y = mul(x, w) + b

dy/dx = mul(G, w)

dy/db = sum(G)
dy/dw = mul(GT, X)

Forward

Backward

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

76

fn (%x: Tensor[(10, 10), float32, needs_grad=True], 
    %weight: Tensor[(10, 10), float32, needs_grad=False], 
    %bias: Tensor[(10), float32, needs_grad=True],
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad);
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

Remove unnecessary computations 
from DAG via dependency analysis 

and dead-code elimination.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

====> dy / dx

====> dy / dw
====> dy / db

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

77

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

Freely annotate ANY parameters 

TTE will trim the computation accordingly.

fn (%x: Tensor[(10, 10), float32, needs_grad=False], 
    %weight1: Tensor[(10, 10), needs_grad=False], 
    %bias1: Tensor[(10), needs_grad=False],
    %weight2: Tensor[(10, 10), needs_grad=True],
    %bias2: Tensor[(10), needs_grad=True],
    …………
    %grad: .., float32]),
{
  # …
}

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

78

Automatically remove 
the buffers of pruned 

gradients from the 
computation graph.

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

fn (%x: Tensor[(10, 10), float32], 
    %weight: Tensor[(10, 10), float32], 
    %bias: Tensor[(10), float32]),
    %grad: Tensor[(10), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad)
  %5 = multiply(%4, %x);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

fn (%x: Tensor[(10, 10), float32, needs_grad=True], 
    %weight: Tensor[(20, 10), float32, needs_grad=0.5], 
    %bias: Tensor[(20), float32, needs_grad=True],
    %grad: Tensor[(10, 20), float32]),
{
  # forward
  %0 = multiply(%x, %weight);
  %0.1 = slice(%x, begin=[0, 0], ends=[10, 10]);
  %1 = add(%0, %bias);
  # backward
  %3 = multiply(%grad, %weight);
  %4 = transpose(%grad)
  %5 = multiply(%4, %0.1);
  %6 = sum(%grad, axis=-1);
  (%3, %5, %6)
}

https://tinytraining.mit.edu
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3. Tiny Training Engine (TTE)

79

Sparse update results

• Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

• After graph pruning, un-used weights and sub-tensors are pruned from DAG => 6.5-8.7x memory 

saving
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters

F0

F1

F2

F3

B0

B1

B2

B3

U0

U1

U2

U3

F: Forward, B: Backward, U: Update

https://tinytraining.mit.edu


On-Device Training Under 256KB Memory https://tinytraining.mit.edu

3. Tiny Training Engine (TTE)

83

Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

Operator life-cycle analysis reveals the memory 
redundancy in the optimization step.

(a) Conventional way to update parameters
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Re-ordering reduces memory footprint

Operator life-cycle analysis reveals the memory 
redundancy in the optimization step.

(a) Conventional way to update parameters (b) Operator re-ordering
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After re-ordering, the redundant memory 
usage is eliminated from training.
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Re-ordering reduces memory footprint
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Operator life-cycle analysis shows memory footprint 
can be greatly reduced by operator re-ordering.
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3. Tiny Training Engine (TTE)
Smaller memory usage, faster training speed
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20x smaller memory 23x faster speed
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On-Device Training Demo

https://www.bilibili.com/video/BV1qv4y1d7MV/ https://youtu.be/XaDCO8YtmBw

https://www.bilibili.com/video/BV1qv4y1d7MV/
https://youtu.be/XaDCO8YtmBw


System-Algorithm Co-Design for TinyML

Media Report
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MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [Lin et al., NeurIPS 2021]


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022] 

(Homepage highlight) (Homepage highlight)
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Open Source

Sign up here to get updates!

https://forms.gle/UW1uUmnfk1k6UJPPA

https://tinytraining.mit.edu
https://forms.gle/UW1uUmnfk1k6UJPPA


Song Han: Efficient Deep Learning Computing with Sparsity

Our Publications on Efficient Deep Learning Computing
https://hanlab.mit.edu/

1. Learning both Weights and 
Connections for Efficient 
Neural Network, NeurIPS’15 

2. Deep Compression, ICLR’16 
3. AMC, ECCV’18 
4. ProxylessNAS, ICLR’19 
5. Once For All, ICLR’20 
6. HAT, ACL’20 
7. Anycost GAN, CVPR’21 
8. SPVNAS, ECCV’21 
9. Lite Pose, CVPR’22 
10. NAAS, DAC’21 
11. QuantumNAS, HPCA’22 
12. QuantumNAT, DAC’22 
13. QOC, DAC’22 

14. MCUNet, NeurIPS’20 
15. MCUNet-V2, NeurIPS’21 
16. TinyTL, NeurIPS’20 
17. MCUNet-V3, Arxiv’22 
18. DGC, ICLR’18 
19. DGA, NeurIPS’21 
20. PVCNN, NeurIPS’19 
21. Fast-LiDARNet, ICRA’21 
22. BEVFusion, Arxiv’22 
23. TSM, ICCV’19 
24. GAN Compression, CVPR’20 
25. SpAtten, HPCA’21 
26. SpArch, HPCA’20 
27. PointAcc, Micro’20 
28. TorchSparse, SysML’22
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http://hanlab.mit.edu
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1510.00149
https://hanlab.mit.edu/projects/amc/
https://hanlab.mit.edu/projects/proxylessNAS/
https://hanlab.mit.edu/projects/ofa
https://hat.mit.edu/
https://hanlab.mit.edu/projects/anycost-gan/
https://spvnas.mit.edu/
https://github.com/mit-han-lab/litepose
https://hanlab.mit.edu/projects/naas
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/tinyTL/
https://arxiv.org/abs/2206.15472
https://github.com/synxlin/deep-gradient-compression
https://dga.hanlab.ai/
http://pvcnn.mit.edu/
https://hanlab.mit.edu/projects/spvnas/
https://arxiv.org/abs/2205.13542
https://hanlab.mit.edu/projects/tsm/
https://hanlab.mit.edu/projects/gancompression
https://spatten.mit.edu/
https://sparch.mit.edu/
http://hanlab.mit.edu/projects/pointacc
https://torchsparse.mit.edu/


Song Han: Efficient Deep Learning Computing with Sparsity

New Course: TinyML and Efficient Deep Learning Computing
MIT 6.S965: https://efficientml.ai

• This course is a deep dive into efficient machine learning 
techniques that enable powerful deep learning applications on 
resource-constrained devices.
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Anonymous Student Feedback Collected from Mid-term

https://efficientml.ai

