Towards Constituting Mathematical Structures for Learning to
Optimize

Jialin Liu
Alibaba DAMO

April 25, 2023

1/42

Outline

. Introduction

. LISTA: An Intuitive Example

. Towards More General Cases

. Diving Deeper on Explanation

. Summary

2/42

Outline

1. Introduction

3/42

Learning to Optimize

Consider an optimization problem

min F(x)

x€R™
Instead of manually designing an iterative algorithm

Xp+1 = Tr(xXx)
One may learn an update rule from data
Xk+1 = TF(Xk-;‘g)

where the parameter 0 is obtained by minimizing a loss function

gleig EFG}‘L(XK (9))

The set F consists of all instances of interest.
The process of minimizing the loss function is named training.

Such methodology is named Learning to Optimize (L20).

4/42

Examples

Example I: Learned ISTA (LISTA) [Gregor and LeCun, 2010]
® LASSO: F = {(1/2)||Ax —b|2 + \||x|l: : A € R™*" b € R™}
® Choose a baseline algorithm ISTA: xj41 = proxy, (Xx — ar AT (Ax; — b))

® Parameterization: Xj41 = prox,, (W1kxi + W2b)

Example II: Learning a rule for step size [Xiong et al., 2022]
® Deep learning:
F ={f(x): f is the loss function of training neural networks}

® Choose a baseline algorithm SGD: xj4+1 = Xx — axgk, where gy is the

stochastic gradient.

® Parameterization: ar = NN(xx, g;0).

5/42

Examples

Example I: Learned ISTA (LISTA) [Gregor and LeCun, 2010]
® LASSO: F = {(1/2)||Ax —b|2 + \||x|l: : A € R™*" b € R™}
® Choose a baseline algorithm ISTA: xj41 = proxy, (Xx — ar AT (Ax; — b))

® Parameterization: Xj41 = prox,, (W1kxi + W2b)

Example II: Learning a rule for step size [Xiong et al., 2022]
® Deep learning:
F ={f(x): f is the loss function of training neural networks}

® Choose a baseline algorithm SGD: xj4+1 = Xx — axgk, where gy is the

stochastic gradient.

® Parameterization: ar = NN(xx, g;0).

Sample instances from F and Learn an algorithm.

The learned algorithm works well on unseen instances in F.

5/42

Discussions and Motivations

A tradeoff:

® A baseline algorithm works for a broad class of problems

® One may design advanced algorithms for specific algorithms

6/42

Discussions and Motivations

A tradeoff:

® A baseline algorithm works for a broad class of problems

® One may design advanced algorithms for specific algorithms

L20 provides a uniform tool to obtain customized algorithms without domain

knowledge.

6/42

Discussions and Motivations

A tradeoff:
® A baseline algorithm works for a broad class of problems

® One may design advanced algorithms for specific algorithms

L20 provides a uniform tool to obtain customized algorithms without domain

knowledge.

Questions:

® Can we find principles from learned algorithms?

® Can we use domain knowledge to regularize the models?

6/42

Papers and Coauthors

This talk is based on the following articles:

® J. Liu, X. Chen, Z. Wang, W. Yin, and H. Cai. “Towards Constituting
Mathematical Structures for Learning to Optimize.” ICML 2023.

® X. Chen, J. Liu, Z. Wang, and W. Yin. “Hyperparameter Tuning is All
You Need for LISTA.” NeurlPS 2021.

® J. Liu, X. Chen, Z. Wang, and W. Yin. “ALISTA: Analytic weights are as
good as learned weights in LISTA.” ICLR 2019.

® X. Chen, J. Liu, Z. Wang, and W. Yin. “Theoretical Linear Convergence of
Unfolded ISTA and its Practical Weights and Thresholds.” NeurlPS 2018.

Coauthors (a ~ 8): Hangin Cai (UCF), Xiaohan Chen (Alibaba), Zhangyang
Wang (UTAustin), Wotao Yin (Alibaba).

7/42

Outline

2. LISTA: An Intuitive Example

8/42

LASSO and ISTA

LASSO: assume b = Ax. + noise; recover X, by solving
1 2
min || Ax — bz + Alx]lx

also known as /¢1-regularized least-squares and compressed sensing

9/42

LASSO and ISTA

LASSO: assume b = Ax. + noise; recover X, by solving
1 2
min | Ax — b3 + x|
also known as /¢1-regularized least-squares and compressed sensing
Iterative soft-thresholding algorithm (ISTA):
Xk+1 = Mra (xk — aAT(Axk — b))

= convergence requires a proper stepsize « or line search
= the gradient-descent step reduces 3||Ax — b||*

= the soft-thresholding step naa (+) reduces A||x||1

9/42

Learned ISTA [Gregor and LeCun, 2010]

Introduce scalar = A and matrices W1 = aAT and Wy =I— aATA.

Rewrite ISTA as
Xk+1 = 1Mo (W1b + W2Xk)~

10/ 42

Learned ISTA [Gregor and LeCun, 2010]

Introduce scalar = A and matrices W1 = aAT and Wy =I— aATA.

Rewrite ISTA as
Xk+1 = 1Mo (W1b + szk)~

Introduce 0k, W1 5, Wa i, k=0,1,..., K — 1, as free parameters and define
Xk+1 = 1o, (Wl,kb —|—W27kxk.), k= 0,1,--- ,K — 1.

Once {Gk,WLk,Wg,k}kK;Ol are determined, we obtain a new algorithm.

Find parameters such that the algorithm converges very fast for a set of
LASSO instances with the same A.

10/ 42

Fix random matrix A, generate a set of sparse x. ;, with varying supports, and
b; = Ax.,; + noise;. Form the training set 7 = {(xx,:, b;)}.

Fix a small K > 0, and train the parameters by applying SGD to

min - Eq, per [[Xx(b) — x5
{0k W1 1, Wa }

After the NN is trained with K = 16:

ISTA (A =0.1) -6— ISTA (A = 0.025)
ISTA (A =0.05) —%—LISTA

-20

NMSE (dB)

-30

40 7 T T T T T T T 1
0 100 200 300 400 500 600 700 800
Iterations / Layers (k)

The trained NN is called Learned ISTA (LISTA).

11/42

Weight coupling
Given the superb performance,

can we find some principles from the learned algorithm?

12/42

Weight coupling
Given the superb performance,

can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x. given
infinite many steps.

12/42

Weight coupling
Given the superb performance,

can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x. given

infinite many steps.

Theorem
Assume no noise. If LISTA has x, — x. as k — oo uniformly for all sparse x.,
then the parameters {0y, W1,k, Wa } ey must satisfy the relation

W+ WikA—1I ask— co.

12/42

Weight coupling
Given the superb performance,

can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x. given
infinite many steps.

Theorem

Assume no noise. If LISTA has x, — x. as k — oo uniformly for all sparse x.,
then the parameters {0y, W1,k, Wa } ey must satisfy the relation

Waor+ Wi A—1I ask— oo

Indeed, training confirms the claims:

"‘~x—-x—x-~x_*—x——x—x--x_..,‘_x__“

T T T T T T T T T T T T T T I

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of layers (k)

= 0

12/42

Therefore, we enforce
Wor=1-—Wy A,

for all k, yielding the iteration:
Xp+1 = 7o, (Xx + W1 k(b — Axy)).

We call it weight coupling (CP).

13/42

Therefore, we enforce
Wor=1-—Wy A,

for all k, yielding the iteration:
Xp+1 = Moy, (X + Wi k(b — Axy)).
We call it weight coupling (CP).

Parameters
reduce

O(n*’K + mnK) =5 O(mnK),

significant reduction if m < n (which is often the case).

After this reduction, training also appears to be more stable.

13/42

Empirical Settings

Normalized MSE (NMSE) in dB:
NMSE(%, x.) = 201og; ([|% — %« [[2/[1xx|2)
Tests:

® m = 250, n = 500, sparsity s ~ 50.
® A;j ~N(0,1/4/m), iid. A is column-normalized.

® Magnitudes were sampled from standard Gaussian.

14 /42

NMSE (dB)

-20

-30

-50

Weight coupling (CP)

—»%— ISTA —— AMP —»—— LISTA-CP
—©— FISTA —+—— LISTA

T T T T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tterations / Layers (k)

CP stabilizes intermediate results.

Same final recovery quality.

15 /42

Outline

3. Towards More General Cases

16 /42

A general L20 model

Consider minykern» F(x).

A baseline manually designed algorithm: gradient descent with momentum:

Vit1 =Brvi + (1 — Bx) VF(xk),

Xk+1 =Xk — Ak V41, k=0,1,2,...
Andrychowicz et al. [2016] proposed to learn a parameterized algorithm:
dy, hy, =LSTM (x, VF(xx), hr_1;¢)
Xpy1 =Xk — dp

by minimizing a loss function

K

md)inIEpef Z F(Xk)
k=1

Term “LSTM" means a long short-term memory cell.

17 /42

Loss

Numerical results

Quadratics
1 -—- ADAM
10 ¥y -—- RMSprop

18/42

Some discussions

Observation: The learned update rule may diverge on unseen instances.

This is still an active topic in the literature. [Wichrowska et al., 2017, Wu

et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

19/42

Some discussions

Observation: The learned update rule may diverge on unseen instances.

This is still an active topic in the literature. [Wichrowska et al., 2017, Wu

et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dj should satisfy if we assume

Xk — Xs !

19/42

Some discussions

Observation: The learned update rule may diverge on unseen instances.

This is still an active topic in the literature. [Wichrowska et al., 2017, Wu

et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dj should satisfy if we assume
Xp — Xs !

Preparations:

= Assumptions on the objective function F"

(Smooth case) F(x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient

(Nonsmooth case) F'(x) = r(x), where r is proper, closed and convex.
(Composite case) F(x) = f(x) + r(x)

19/42

Some discussions

Observation: The learned update rule may diverge on unseen instances.

This is still an active topic in the literature. [Wichrowska et al., 2017, Wu

et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dj should satisfy if we assume
Xp — Xs !

Preparations:

= Assumptions on the objective function F"

(Smooth case) F(x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient

(Nonsmooth case) F'(x) = r(x), where r is proper, closed and convex.
(Composite case) F(x) = f(x) + r(x)

= Assumptions on the update direction {d}

19/42

Basic settings for smooth case

The update direction dy is generated by LSTM (x, V f (xx), hx_1; ¢)

20 /42

Basic settings for smooth case

The update direction dy is generated by LSTM (x, V f (xx), hx_1; ¢)

Write d, = m(xk, Vf(xk), hg—1; ¢) where m is a parameterized operator

20 /42

Basic settings for smooth case

The update direction dy is generated by LSTM (x, V f (xx), hx_1; ¢)
Write d, = m(xk, Vf(xk), hg—1; ¢) where m is a parameterized operator

With my(-,-) ;== m(-, -, hiy_1), we write dix = my (xk,Vf(xk); gzﬁ)

20 /42

Basic settings for smooth case

The update direction dy is generated by LSTM (xk, Vf(xk), he—1; d))
Write d, = m(xk, Vf(xk), hg—1; ¢) where m is a parameterized operator
With myg(+,-) := m(-, -, hx_1), we write d, = m;, (xk, V f(xx); gzﬁ)

Let's consider a more general update rule
Xk41 = Xk — di (X, V f(xk))
where dy is an operator picked from
Do (R*™) = {d :R*™ — R" | d is differentiable, ||Jd(z)|r < C, Vz € z}

= Training needs derivatives of dy.

= Many existing parameterization approaches yield dy € Do (R*™).

20 /42

Core Assumptions

What conditions should the update rule follow?

21/42

Core Assumptions

What conditions should the update rule follow?

» (Global Convergence) For any sequences {x}52, generated by the given

rule, there exists x. € arg min,cg» f(x) such that limg_,co Xx = Xu.

21/42

Core Assumptions

What conditions should the update rule follow?

» (Global Convergence) For any sequences {x}52, generated by the given

rule, there exists x. € arg min,cg» f(x) such that limg_,co Xx = Xu.

Fixed point assumption: Xx4+1 = X4 as long as x; = Xu:

Xe = X — dpp (X4, Vf(x4))

21/42

Core Assumptions

What conditions should the update rule follow?

» (Global Convergence) For any sequences {x}52, generated by the given
rule, there exists x. € arg min,cg» f(x) such that limg_,co Xx = Xu.

Fixed point assumption: Xx4+1 = X4 as long as x; = Xu:
x. = x. — di(x., V(x.))

Convex analysis theory tells us V f(x.) = 0, and we obtain d(x.,0) = 0.

21/42

Core Assumptions

What conditions should the update rule follow?

» (Global Convergence) For any sequences {x}52, generated by the given

rule, there exists x. € arg min,cg» f(x) such that limg_,co Xx = Xu.

Fixed point assumption: Xx4+1 = X4 as long as x; = Xu:
Xe = Xo — di (%, Vf(x4))
Convex analysis theory tells us V f(x.) = 0, and we obtain d(x.,0) = 0.
» (Asympototic Fixed Point Condition) Formally, we relax it and assume
lim dg(x«,0) =0
k—oo

for any x. € argmin,cpn f(x).

21/42

Core Assumptions

What conditions should the update rule follow?

» (Global Convergence) For any sequences {x}52, generated by the given

rule, there exists x. € arg min,cg» f(x) such that limg_,co Xx = Xu.

Fixed point assumption: Xx4+1 = X4 as long as x; = Xu:
Xe = Xo — di (%, Vf(x4))
Convex analysis theory tells us V f(x.) = 0, and we obtain d(x.,0) = 0.
» (Asympototic Fixed Point Condition) Formally, we relax it and assume
lim dg(x«,0) =0
k—oo

for any x. € argmin,cpn f(x).

The two assumptions are coined as (GC) and (FP), respectively.

21/42

A Preliminary Result

Theorem

For any f and any operator sequence {dx}72 that satisfies (GC) and (FP),
there exist P, € R"*™ and by, € R" satisfying

dk(Xk, Vf(Xk)) = Pka(Xk) + bk,

with Py is bounded and by, — 0 as k — oo.

22/42

A Preliminary Result

Theorem

For any f and any operator sequence {dx}72 that satisfies (GC) and (FP),
there exist P, € R"*™ and by, € R" satisfying

dk(Xk, Vf(Xk)) = Pka(Xk) + bk,

with Py is bounded and by, — 0 as k — oo.

= A “good” update rule is not totally free.

22/42

A Preliminary Result

Theorem

For any f and any operator sequence {dx}72 that satisfies (GC) and (FP),
there exist P, € R"*™ and by, € R" satisfying

di(xk, Vf(xk)) = PV f(xk) + by,
with Py is bounded and by, — 0 as k — oo.

= A “good” update rule is not totally free.

= It covers many optimization algorithms, such as accelerated GD,

quasi-Newton methods, etc.

22/42

A Preliminary Result

Theorem

For any f and any operator sequence {dx}72 that satisfies (GC) and (FP),
there exist P, € R"*™ and by, € R" satisfying

di(xk, Vf(xk)) = PV f(xk) + by,
with Py is bounded and by, — 0 as k — oo.

= A “good” update rule is not totally free.

= It covers many optimization algorithms, such as accelerated GD,

quasi-Newton methods, etc.

= Instead of learning di, one may learn a preconditioner Py, and a bias by,

Xpt1 = Xk — P (x5 8) VI (xx) — br (345 ¢),

22/42

Nonsmooth case

On nonsmooth problems min, r(x), a direct extension to gradient descent is

sub-gradient descent: Xp+1 = Xr — Qk8k, 8k € Or(Xk).

23 /42

Nonsmooth case

On nonsmooth problems min, r(x), a direct extension to gradient descent is

sub-gradient descent: Xp+1 = Xr — Qk8k, 8k € Or(Xk).

Such explicit rule suffers from convergence issues.

23 /42

Nonsmooth case

On nonsmooth problems min, r(x), a direct extension to gradient descent is

sub-gradient descent: Xp+1 = Xr — Qk8k, 8k € Or(Xk).
Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:

X4l = Xk — QkBh+1, 8h+1 € Or(Xpt1)-

23 /42

Nonsmooth case

On nonsmooth problems min, r(x), a direct extension to gradient descent is

sub-gradient descent: Xp+1 = Xr — Qk8k, 8k € Or(Xk).

Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:
Xp+1 = Xk — Ok8h+1, Bk+1 € Or(Xp41)-

Back to L20, we choose an implicit rule:

Xpt1 = X — A (Xp4+1, 8k+1), Brt1 € Or(Xp41).

23 /42

Implicit rule:

Xpt1 = X — Ak (Xp41, 8k+1), Brt1 € Or(Xp41). (1)

Theorem

For each r and any {dj}3>, that satisfies (GC) and (FP), there exist
P, € R"*™ and by, € R” such that (1) yields
Xkt1 = X — Prgkt1 — br, 8rt1 € Or(Xnt1),

with Py, is bounded and by, — 0 as k — oco. If we further assume Py > 0,

Xk+1 can be uniquely determined through X1 = prox, p (xx — bg).

The proximal operator prox,. p, is defined with prox,. p (%) := argmin, r(x)+ 3 Hx—iHif 1-

= Global Convergence and Asymptotic Fixed Point Condition imply (1) yields a

structure.

= A generalized proximal point algorithm. Fix P; = al, by = 0, it reduces to

PPA.

24/42

Composite Case

Consider the composite case miny f(x) + r(x). We analyze a mixed rule

Xpr1 = X — die(Xe, VF(Xk), Xkt 1, 8 11)s 8rr1 € Or(Xpt1). (2)

Theorem

For any f,r,{dx}72 that satisfies (GC) and (FP), there exist Py, € R"*™ and
b € R™ such that (2) yields

Xpr1 = Xk — Pr(Vf(Xk) — 8ky1) — br, gri1 € Or(Xpy1),

with Py is bounded and by, — 0 as k — oo. If we further assume Py > 0,

Xk4+1 can be uniquely determined given xj, through

Xkt+1 = prox, p, (xx — PV f(xx) — bi). 3)

With Py, = oI, by = 0, (3) reduces to Proximal Gradient Descent (PGD).

25 /42

Longer Horizen
Introduce an extra variable yj that encodes historical information
Y = m(lexkfh s ,kaT).
Insert yi to the previous update rule

Xp+1 = X — di(Xk, VF(Xk), Xet1, 81, Y&, VI(YE)), Ert1 € Or(Xnt1)

Theorem
Suppose T = 1. For any f,r,m,{dx}7=, that satisfies (GC) and (FP), there
exist Py, Pok, Ar € R™™ ™ and b1k, bax € R" satisfying
Xk+1 = X — (Pl,k - P2,k)v_f(xk) - P2,kvf(yk) - bl,k
—Pi1kgr+1 — Br(yr — Xi), 8r+1 € Or(Xit1),
Vit1 = (I — Ap)Xpt1 + Arxi + bak
for allk =0,1,2,--, with {P1, P2k, Ar} bounded and by, — 0,ba) — 0

as k — oo.

26 / 42

L20 Model and Parameterization

If we further assume P j is uniformly symmetric positive definite, then we can
substitute Pg,kPii with By and obtain
Xk =xk — P1uVf(xk),
Ve =yr — PV I(ye),
X1 = prox, p, , (1= Bu)%i +Buye —bus)

Vi+1 = Xi+1 + Ap (X1 — Xx) + ba .

27 /42

L20 Model and Parameterization

If we further assume P j is uniformly symmetric positive definite, then we can

substitute P27kPii with By and obtain
ﬁk = Xk — PLka(Xk),
Ve =yr — PixVf(yr),

Xk41 = pI‘OXT’ka ((I — Bk)fik + Bryr — bl,k),
Vi+1 = Xi+1 + Ap (X1 — Xx) + ba .

We suggest using diagonal matrices for Py ,, By, Ay in practice:
Pl,k = diag(pk)7 Bk = diag(bk), Ak = diag(ak),

where pg, bi,ar € R™ are vectors.

27 /42

L20 Model and Parameterization

If we further assume P j is uniformly symmetric positive definite, then we can

substitute P27kPii with By and obtain
Xk =xk — P1uVf(xk),
e =yr —P1iVI(yr),
x41 = prox, p, , (([- B + Buyi — bus),
Vi1 = X1 + Ap (X1 — Xg) + bog.

We suggest using diagonal matrices for Py ,, By, Ay in practice:
Pl,k = diag(pk)7 Bk = diag(bk), Ak = diag(ak),

where pg, bi,ar € R™ are vectors.

We model pi, ak, bk, b1k, b2 as the output of LSTM:

Ok, hk = LSTM(Xk-, Vf(xk), hk—l; ¢LSTM),
Pk ak, b, b1, ba), = MLP(0k; ¢mie).

27 /42

Ablation Study

We compare

e PBA12: pk,ak,bk,blyk,bgyk are all learnable.
® PBAL: pj,ai,bi,b1 i are learnable; by, = 0.

PBA2: pj,ai,bi,ba i are learnable; by, = 0.
® PBA: pi.ak,by are learnable; ba x = by x = 0.

PA: px,ay are learnable; be x = b1 x = 0; by = 1.
® P: only pi is learnable; a, = bax = b1 = 0; br = 1.

® A:only ay is learnable; by, = b1, =0; by =1; pr = (1/L)1.

on more challenging LASSO settings: A is not fixed; each LASSO instance
takes an independently generated A.

28 /42

1071

1073

1073

Ablation study: Results

0 25 50 75 100 125 150 175 200
Iteration k

—— lbyl

— |lbzl

0 25 50 75 100 125 150 175 200
Iteration k

29/42

Final model

We adopt (PA) and fix by x = bax =0 and b, = 1.

ok, hy = LSTM (xx, V f(xx), hi—1; prsm) .
Pk, ar = MLP(ok; pmip),
Xk4+1 = Prox, .. (yk —Pr O Vf(yk))z
Yit1 = Xit1 + ar © (Xk41 — Xk)-

Instead of learning the update rule, we suggest learning a preconditioner px

and an accelerator ay.

30/42

Comparison: In-Distribution Test

1021 — ISTA
. 100 FISTA
L Ada-LISTA
Lli 10-2] — L20-DM
= —— L20-RNNprop
2107 — L20-PA
= —— Adam

-6
10 —— AdamHD
108
10° 10t 10? 103

Iteration k

Figure: LASSO: Train and test on synthetic data.

._.
15}
N

ISTA
FISTA
L20-DM
L20-RNNprop
L20-PA

Adam
AdamHD

(F(xx) = F<)/F«

0° 10t 10?2 103
Iteration k

=

Figure: Logistic: Train and test on synthetic data. 3142

Comparison: Qut-of-Distribution Test

10°

A“m: Ak

ISTA

FISTA
L20-DM
L20-RNNprop
L20-PA

Adam
AdamHD

10t

102 103
Iteration k

Figure: LASSO: Train on synthetic data and test on real data (BSDS500).

._.
15}
o

104

(F(xk) = F«)/F«

=
o
|

o

Figure: Logistic: Train on synthetic data and test on real data (lonosphere).

ISTA
FISTA
L20-DM
L20-RNNprop
L20-PA
Adam
AdamHD

i

10t

102 10°
Iteration k

32/42

Outline

4. Diving Deeper on Explanation

33/42

Further analysis

Recall LISTA-CP model:

Xi+1 = N, (X — W1k (Axy — b)).

34/42

Further analysis

Recall LISTA-CP model:

Xi+1 = N, (X — W1k (Axy — b)).

Assume b = Ax, + noise, where supp(x.) is uniformly distributed.

34/42

Further analysis

Recall LISTA-CP model:

Xi+1 = N, (X — W1k (Axy — b)).

Assume b = Ax, + noise, where supp(x.) is uniformly distributed.

Liu et al. [2019] shows that the recovery error and convergence rate only
depend on

.
sup max |w; a;|
g 1<izj<n

= W, 1 is the i-th column of W j; a; is the j-th column of A.
= W, ; are scaled such that wzkai =1foralli=1,2,---,n.

= One might minimize the non-diagonal terms of WIkA independently for
each k.

= An extension to mutual coherence in compressive sensing.

34/42

Parameter reduction: tie 1//; across iterations
Inspired by the analysis, let us try W ;, tied for all k. Write it as W.
= Tied LISTA (TiLISTA) iteration:

X1 = Mo, (Xk — W (Axg — b)).

35/42

Parameter reduction: tie 1//; across iterations
Inspired by the analysis, let us try W ;, tied for all k. Write it as W.

« Tied LISTA (TiLISTA) iteration:

Parameters:

We learn only step sizes {x}r and thresholds {6x}, and a single matrix W.

NMSE (dB)

I
W
=}

|
N
o

I
[
o

|
-}
=}

|
~
o

X1 = Mo, (Xk — W (Axg — b)).

reduce

O(mnK) — O(mn + K),

—— LISTA-CPSS
i TIiLISTA

'\9\\ i
S

A

012 3 4586 7 8 9 10111213 141516
Layer (k)

TiLISTA works even slightly better than LISTA-CPSS

35/42

Observation

We scale W such that w; a; =1 for i = 1,...,n and then measure
maxi<izj<n |W; a;| in TiLISTA. Compare it to ALISTA (next slide).

0.304 — TiLISTA
-—- ALISTA

Mutual Coherence
o o o
NN
» o (5]

o
N
N

o
N
o

0 10 20 30 40 50 60 70 80 90 100
Training Step (k)

Good W needs to have small mutual coherence to A.

36/42

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

37/42

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .
Two steps:
1. Compute approximately optimal W:

~ . T 2 T .
W € argmin HW AHF, st.wy;a;, =1, Vi=1,2,--- ,n,
WER’Ian"L

which is a convex quadratic program (QP).

37/42

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W:

~ . T 2 T .
W € argmin HW AHF, st.wy;a;, =1, Vi=1,2,--- ,n,
WER’Ian"L

which is a convex quadratic program (QP).

2. With W fixed, learn {~x, 01} from data

37/42

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W:

~ . T 2 T .
W € argmin HW AHF, st.wy;a;, =1, Vi=1,2,--- ,n,
WER’Ian"L

which is a convex quadratic program (QP).

2. With W fixed, learn {~x, 01} from data

Parameters:
reduce

O(mn+ K) — O(K).

Training takes only minutes.

37/42

Noiseless case
(SNR=0)

Noisy case
(SNR=30dB)

Numerical evaluation

NMSE (dB)
@

55 3 [—T1sTA ——— LISTACPSS

—~—— FISTA 4 TILISTA

-65 4 |-o—LISTA -©— = ALISTA

ST T T T T T T T T T T T T T T T
001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tterations / Layers (k)

0

5 e

10

@15

5720

@ 25

2 30

-35 4 [——ISTA -—L|STA-0P§|

40 3 [+—FISTA ~6—— TiLISTA

45 3 |-e—usTA -©— - ALISTA

A B B B B B B B B B S B B R B B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tterations / Layers (k)

38/42

HyperLISTA [Chen et al., 2021]

Introduce

® 3 hybrid-thresholding operator to bypass pj largest entries and
soft-threshold the rest
® analytic formulas for the parameters

® three hyper-parameters subject to grid search

39/42

HyperLISTA [Chen et al., 2021]

Introduce

® 3 hybrid-thresholding operator to bypass pj largest entries and
soft-threshold the rest
® analytic formulas for the parameters

® three hyper-parameters subject to grid search

HyperLISTA learns ¢, c2,c3 > 0 and use them to set

O = cl,uHAJr(Ax;€ — b)H17 soft threshold

Br = cap ||xk|lo, momentum stepsize

pr = csmin | log HAT—bH1 n |, pass-through count
[AT(Axk — by

The formulas are motivated by the analysis but use xj instead of x..

39/42

HyperLISTA [Chen et al., 2021]

Introduce

® 3 hybrid-thresholding operator to bypass pj largest entries and
soft-threshold the rest
® analytic formulas for the parameters

® three hyper-parameters subject to grid search

HyperLISTA learns ¢, c2,c3 > 0 and use them to set

O
B

pr = csmin | log HAT—bH1 n pass-through count
[AT(Axg = D))7)

The formulas are motivated by the analysis but use xj instead of x..

cl,uHAJr (Axy — b)H soft threshold

1’

caft |[xk|los momentum stepsize

Parameters:
O(K) " 3,

Training can be done by grid search.

39/42

HyperLISTA is fast and robust

0 0
-20
g g -10
S _40)
o —e— ALISTA a 20| ™ ALISTA
g —60{ —*— ALISTA-MM-Symm % - —#— ALISTA-MM-Symm
Ada-LFISTA Ada-LFISTA
_80 NA-ALISTA 30 NA-ALISTA
—— HyperLISTA 7297 —— HyperLISTA
5 10 15 5 10 15
Layer Layer
(a) Noiseless. No train/test mismatch. (b) Sparsity ratio p changed to 0.15.
0 0 —e— ALISTA
== ALISTA-MM-Symm
=20 . Ada-LFISTA
) o —-10 NA-ALISTA
2 2 —+— HyperLISTA
u =401 = AlisTA bl
= MM s -
IS g
NA-ALISTA
~801 —— HyperLISTA -30
5 10 15 5 10 15
Layer Layer
(c) Variance o of non-zero elements changed to 2. (d) Noise level changed to SNR=30dB.

Good analytic rules have better generalization perf.

40 /42

Outline

5. Summary

41/42

Discussions

Take-home messages:
® Use a black-box model with huge capacity works for solving optimization
problems
® Many parameters in these L20 models are actually redundant

® Math domain knowledge helps trimming L20 models and improve
generalization and interpretability.

42/42

Discussions

Take-home messages:

® Use a black-box model with huge capacity works for solving optimization
problems

® Many parameters in these L20 models are actually redundant

® Math domain knowledge helps trimming L20 models and improve

generalization and interpretability.

Math — Machine learning:
® Use a black-box model to discover new algorithms.
Machine learning — Math:

® Use math tools to understand the learned model.
® Improve the learned model.

® Get insights, develop new math algorithms.

42/42

References:

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by
gradient descent by gradient descent. Advances in neural information processing
systems, 29, 2016.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and
Zhangyang Wang. Training stronger baselines for learning to optimize. Advances in
Neural Information Processing Systems, 33:7332-7343, 2020.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Hyperparameter tuning
is all you need for lista. Advances in Neural Information Processing Systems, 34:
11678-11689, 2021.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In
Proceedings of the 27th international conference on international conference on
machine learning, pages 399—406, 2010.

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned
optimization: Stability, robustness, and inductive biases. arXiv preprint
arXiv:2209.11208, 2022.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Alista: Analytic weights
are as good as learned weights in lista. In International Conference on Learning
Representations (ICLR), 2019.

43/42

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha
Sohl-Dickstein. Understanding and correcting pathologies in the training of learned
optimizers. In International Conference on Machine Learning, pages 4556—4565.
PMLR, 2019.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha
Sohl-Dickstein. Practical tradeoffs between memory, compute, and performance in
learned optimizers. In Conference on Lifelong Learning Agents, pages 142-164.
PMLR, 2022.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez
Colmenarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned
optimizers that scale and generalize. In International Conference on Machine
Learning, pages 3751-3760. PMLR, 2017.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon
bias in stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, Ruochen Wang, and Cho-Jui Hsieh.
Learning to schedule learning rate with graph neural networks. In International
Conference on Learning Representation (ICLR), 2022.

44)42

	Introduction
	LISTA: An Intuitive Example
	Towards More General Cases
	Diving Deeper on Explanation
	Summary
	References

