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Learning to Optimize

Consider an optimization problem

min F(x)

x€R™
Instead of manually designing an iterative algorithm

Xp+1 = Tr(xXx)
One may learn an update rule from data
Xk+1 = TF(Xk-;‘g)

where the parameter 0 is obtained by minimizing a loss function

gleig EFG}‘L(XK (9))

The set F consists of all instances of interest.
The process of minimizing the loss function is named training.

Such methodology is named Learning to Optimize (L20).
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Examples

Example I: Learned ISTA (LISTA) [Gregor and LeCun, 2010]
® LASSO: F = {(1/2)||Ax —b|2 + \||x|l: : A € R™*" b € R™}
® Choose a baseline algorithm ISTA: xj41 = proxy, (Xx — ar AT (Ax; — b))

® Parameterization: Xj41 = prox,, (W1kxi + W2b)

Example II: Learning a rule for step size [Xiong et al., 2022]
® Deep learning:
F ={f(x): f is the loss function of training neural networks}

® Choose a baseline algorithm SGD: xj4+1 = Xx — axgk, where gy is the

stochastic gradient.

® Parameterization: ar = NN(xx, g;0).
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® Parameterization: Xj41 = prox,, (W1kxi + W2b)

Example II: Learning a rule for step size [Xiong et al., 2022]
® Deep learning:
F ={f(x): f is the loss function of training neural networks}

® Choose a baseline algorithm SGD: xj4+1 = Xx — axgk, where gy is the

stochastic gradient.

® Parameterization: ar = NN(xx, g;0).

Sample instances from F and Learn an algorithm.

The learned algorithm works well on unseen instances in F.
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Discussions and Motivations

A tradeoff:

® A baseline algorithm works for a broad class of problems

® One may design advanced algorithms for specific algorithms
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Discussions and Motivations

A tradeoff:
® A baseline algorithm works for a broad class of problems

® One may design advanced algorithms for specific algorithms

L20 provides a uniform tool to obtain customized algorithms without domain

knowledge.

Questions:

® Can we find principles from learned algorithms?

® Can we use domain knowledge to regularize the models?
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2. LISTA: An Intuitive Example
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LASSO and ISTA

LASSO: assume b = Ax. + noise; recover X, by solving
1 2
min || Ax — bz + Alx]lx

also known as /¢1-regularized least-squares and compressed sensing
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LASSO and ISTA

LASSO: assume b = Ax. + noise; recover X, by solving
1 2
min | Ax — b3 + x|
also known as /¢1-regularized least-squares and compressed sensing
Iterative soft-thresholding algorithm (ISTA):
Xk+1 = Mra (xk — aAT(Axk — b))

= convergence requires a proper stepsize « or line search
= the gradient-descent step reduces 3||Ax — b||*

= the soft-thresholding step naa (+) reduces A||x||1
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Learned ISTA [Gregor and LeCun, 2010]

Introduce scalar = A and matrices W1 = aAT and Wy =I— aATA.

Rewrite ISTA as
Xk+1 = 1Mo (W1b + W2Xk)~
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Learned ISTA [Gregor and LeCun, 2010]

Introduce scalar = A and matrices W1 = aAT and Wy =I— aATA.

Rewrite ISTA as
Xk+1 = 1Mo (W1b + szk)~

Introduce 0k, W1 5, Wa i, k=0,1,..., K — 1, as free parameters and define
Xk+1 = 1o, (Wl,kb —|—W27kxk.), k= 0,1,--- ,K — 1.

Once {Gk,WLk,Wg,k}kK;Ol are determined, we obtain a new algorithm.

Find parameters such that the algorithm converges very fast for a set of
LASSO instances with the same A.
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Fix random matrix A, generate a set of sparse x. ;, with varying supports, and
b; = Ax.,; + noise;. Form the training set 7 = {(xx,:, b;)}.

Fix a small K > 0, and train the parameters by applying SGD to

min - Eq, per [[Xx(b) — x5
{0k W1 1, Wa }

After the NN is trained with K = 16:

ISTA (A =0.1) -6— ISTA (A = 0.025)
ISTA (A =0.05)  —%—LISTA

-20

NMSE (dB)

-30

40 7 T T T T T T T 1
0 100 200 300 400 500 600 700 800
Iterations / Layers (k)

The trained NN is called Learned ISTA (LISTA).
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Weight coupling
Given the superb performance,

can we find some principles from the learned algorithm?
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Weight coupling
Given the superb performance,

can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x. given
infinite many steps.

Theorem

Assume no noise. If LISTA has x, — x. as k — oo uniformly for all sparse x.,
then the parameters {0y, W1,k, Wa  } ey must satisfy the relation

Waor+ Wi A—1I ask— oo

Indeed, training confirms the claims:

"‘~x—-x—x-~x_*—x——x—x--x_..,‘_x__“

T T T T T T T T T T T T T T I

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of layers (k)

= 0
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Therefore, we enforce
Wor=1-—Wy A,

for all k, yielding the iteration:
Xp+1 = 7o, (Xx + W1 k(b — Axy)).

We call it weight coupling (CP).
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Therefore, we enforce
Wor=1-—Wy A,

for all k, yielding the iteration:
Xp+1 = Moy, (X + Wi k(b — Axy)).
We call it weight coupling (CP).

Parameters
reduce

O(n*’K + mnK) =5 O(mnK),

significant reduction if m < n (which is often the case).

After this reduction, training also appears to be more stable.
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Empirical Settings

Normalized MSE (NMSE) in dB:
NMSE(%, x.) = 201og; ([|% — %« [[2/[1xx|2)
Tests:

® m = 250, n = 500, sparsity s ~ 50.
® A;j ~N(0,1/4/m), iid. A is column-normalized.

® Magnitudes were sampled from standard Gaussian.
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NMSE (dB)

-20

-30

-50

Weight coupling (CP)

—»%— ISTA —— AMP —»—— LISTA-CP
—©— FISTA —+—— LISTA

T T T T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tterations / Layers (k)

CP stabilizes intermediate results.

Same final recovery quality.
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3. Towards More General Cases

16 /42



A general L20 model

Consider minykern» F(x).

A baseline manually designed algorithm: gradient descent with momentum:

Vit1 =Brvi + (1 — Bx) VF(xk),

Xk+1 =Xk — Ak V41, k=0,1,2,...
Andrychowicz et al. [2016] proposed to learn a parameterized algorithm:
dy, hy, =LSTM (x, VF(xx), hr_1;¢)
Xpy1 =Xk — dp

by minimizing a loss function

K

md)inIEpef Z F(Xk)
k=1

Term “LSTM" means a long short-term memory cell.
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Loss

Numerical results

Quadratics
1 -—- ADAM
10 ¥y -—- RMSprop
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Some discussions

Observation: The learned update rule may diverge on unseen instances.

This is still an active topic in the literature. [Wichrowska et al., 2017, Wu

et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]
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Observation: The learned update rule may diverge on unseen instances.

This is still an active topic in the literature. [Wichrowska et al., 2017, Wu

et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dj should satisfy if we assume
Xp — Xs !

Preparations:

= Assumptions on the objective function F"

(Smooth case) F(x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient

(Nonsmooth case) F'(x) = r(x), where r is proper, closed and convex.
(Composite case) F(x) = f(x) + r(x)

= Assumptions on the update direction {d}
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Basic settings for smooth case

The update direction dy is generated by LSTM (x, V f (xx), hx_1; ¢)
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Basic settings for smooth case

The update direction dy is generated by LSTM (xk, Vf(xk), he—1; d))
Write d, = m(xk, Vf(xk), hg—1; ¢) where m is a parameterized operator
With myg(+,-) := m(-, -, hx_1), we write d, = m;, (xk, V f(xx); gzﬁ)

Let's consider a more general update rule
Xk41 = Xk — di (X, V f(xk))
where dy is an operator picked from
Do (R*™) = {d :R*™ — R" | d is differentiable, ||Jd(z)|r < C, Vz € z}

= Training needs derivatives of dy.

= Many existing parameterization approaches yield dy € Do (R*™).
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Core Assumptions

What conditions should the update rule follow?
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Core Assumptions

What conditions should the update rule follow?

» (Global Convergence) For any sequences {x}52, generated by the given

rule, there exists x. € arg min,cg» f(x) such that limg_,co Xx = Xu.

Fixed point assumption: Xx4+1 = X4 as long as x; = Xu:
Xe = Xo — di (%, Vf(x4))
Convex analysis theory tells us V f(x.) = 0, and we obtain d(x.,0) = 0.
» (Asympototic Fixed Point Condition) Formally, we relax it and assume
lim dg(x«,0) =0
k—oo

for any x. € argmin,cpn f(x).

The two assumptions are coined as (GC) and (FP), respectively.
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A Preliminary Result

Theorem

For any f and any operator sequence {dx}72 that satisfies (GC) and (FP),
there exist P, € R"*™ and by, € R" satisfying

dk(Xk, Vf(Xk)) = Pka(Xk) + bk,

with Py is bounded and by, — 0 as k — oo.
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A Preliminary Result

Theorem

For any f and any operator sequence {dx}72 that satisfies (GC) and (FP),
there exist P, € R"*™ and by, € R" satisfying

di(xk, Vf(xk)) = PV f(xk) + by,
with Py is bounded and by, — 0 as k — oo.

= A “good” update rule is not totally free.

= It covers many optimization algorithms, such as accelerated GD,

quasi-Newton methods, etc.

= Instead of learning di, one may learn a preconditioner Py, and a bias by,

Xpt1 = Xk — P (x5 8) VI (xx) — br (345 ¢),
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Nonsmooth case

On nonsmooth problems min, r(x), a direct extension to gradient descent is

sub-gradient descent: Xp+1 = Xr — Qk8k, 8k € Or(Xk).
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Nonsmooth case

On nonsmooth problems min, r(x), a direct extension to gradient descent is

sub-gradient descent: Xp+1 = Xr — Qk8k, 8k € Or(Xk).

Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:
Xp+1 = Xk — Ok8h+1, Bk+1 € Or(Xp41)-

Back to L20, we choose an implicit rule:

Xpt1 = X — A (Xp4+1, 8k+1), Brt1 € Or(Xp41).
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Implicit rule:

Xpt1 = X — Ak (Xp41, 8k+1), Brt1 € Or(Xp41). (1)

Theorem

For each r and any {dj}3>, that satisfies (GC) and (FP), there exist
P, € R"*™ and by, € R” such that (1) yields
Xkt1 = X — Prgkt1 — br, 8rt1 € Or(Xnt1),

with Py, is bounded and by, — 0 as k — oco. If we further assume Py > 0,

Xk+1 can be uniquely determined through X1 = prox, p (xx — bg).

The proximal operator prox,. p, is defined with prox,. p (%) := argmin, r(x)+ 3 Hx—iHif 1-

= Global Convergence and Asymptotic Fixed Point Condition imply (1) yields a

structure.

= A generalized proximal point algorithm. Fix P; = al, by = 0, it reduces to

PPA.
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Composite Case

Consider the composite case miny f(x) + r(x). We analyze a mixed rule

Xpr1 = X — die(Xe, VF(Xk), Xkt 1, 8 11)s 8rr1 € Or(Xpt1). (2)

Theorem

For any f,r,{dx}72 that satisfies (GC) and (FP), there exist Py, € R"*™ and
b € R™ such that (2) yields

Xpr1 = Xk — Pr(Vf(Xk) — 8ky1) — br, gri1 € Or(Xpy1),

with Py is bounded and by, — 0 as k — oo. If we further assume Py > 0,

Xk4+1 can be uniquely determined given xj, through

Xkt+1 = prox, p, (xx — PV f(xx) — bi). 3)

With Py, = oI, by = 0, (3) reduces to Proximal Gradient Descent (PGD).
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Longer Horizen
Introduce an extra variable yj that encodes historical information
Y = m(lexkfh s ,kaT).
Insert yi to the previous update rule

Xp+1 = X — di(Xk, VF(Xk), Xet1, 81, Y&, VI(YE)), Ert1 € Or(Xnt1)

Theorem
Suppose T = 1. For any f,r,m,{dx}7=, that satisfies (GC) and (FP), there
exist Py, Pok, Ar € R™™ ™ and b1k, bax € R" satisfying
Xk+1 = X — (Pl,k - P2,k)v_f(xk) - P2,kvf(yk) - bl,k
—Pi1kgr+1 — Br(yr — Xi), 8r+1 € Or(Xit1),
Vit1 = (I — Ap)Xpt1 + Arxi + bak
for allk =0,1,2,--, with {P1, P2k, Ar} bounded and by, — 0,ba ) — 0

as k — oo.
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L20 Model and Parameterization

If we further assume P j is uniformly symmetric positive definite, then we can
substitute Pg,kPii with By and obtain
Xk =xk — P1uVf(xk),
Ve =yr — PV I(ye),
X1 = prox, p, , (1= Bu)%i +Buye —bus )

Vi+1 = Xi+1 + Ap (X1 — Xx) + ba .
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If we further assume P j is uniformly symmetric positive definite, then we can

substitute P27kPii with By and obtain
ﬁk = Xk — PLka(Xk),
Ve =yr — PixVf(yr),

Xk41 = pI‘OXT’ka ((I — Bk)fik + Bryr — bl,k),
Vi+1 = Xi+1 + Ap (X1 — Xx) + ba .

We suggest using diagonal matrices for Py ,, By, Ay in practice:
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where pg, bi,ar € R™ are vectors.
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L20 Model and Parameterization

If we further assume P j is uniformly symmetric positive definite, then we can

substitute P27kPii with By and obtain
Xk =xk — P1uVf(xk),
e =yr —P1iVI(yr),
x41 = prox, p, , (([- B + Buyi — bus ),
Vi1 = X1 + Ap (X1 — Xg) + bog.

We suggest using diagonal matrices for Py ,, By, Ay in practice:
Pl,k = diag(pk)7 Bk = diag(bk), Ak = diag(ak),

where pg, bi,ar € R™ are vectors.

We model pi, ak, bk, b1k, b2 as the output of LSTM:

Ok, hk = LSTM(Xk-, Vf(xk), hk—l; ¢LSTM),
Pk ak, b, b1, ba ), = MLP(0k; ¢mie).
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Ablation Study

We compare

e PBA12: pk,ak,bk,blyk,bgyk are all learnable.
® PBAL: pj,ai,bi,b1 i are learnable; by, = 0.

PBA2: pj,ai,bi,ba i are learnable; by, = 0.
® PBA: pi.ak,by are learnable; ba x = by x = 0.

PA: px,ay are learnable; be x = b1 x = 0; by = 1.
® P: only pi is learnable; a, = bax = b1 = 0; br = 1.

® A:only ay is learnable; by, = b1, =0; by =1; pr = (1/L)1.

on more challenging LASSO settings: A is not fixed; each LASSO instance
takes an independently generated A.
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Ablation study: Results
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Iteration k
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Iteration k
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Final model

We adopt (PA) and fix by x = bax =0 and b, = 1.

ok, hy = LSTM (xx, V f(xx), hi—1; prsm) .
Pk, ar = MLP(ok; pmip),
Xk4+1 = Prox, .. (yk —Pr O Vf(yk))z
Yit1 = Xit1 + ar © (Xk41 — Xk)-

Instead of learning the update rule, we suggest learning a preconditioner px

and an accelerator ay.
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Comparison: In-Distribution Test

1021 — ISTA
. 100 FISTA
L Ada-LISTA
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= —— L20-RNNprop
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Iteration k

Figure: LASSO: Train and test on synthetic data.
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Figure: Logistic: Train and test on synthetic data. 3142



Comparison: Qut-of-Distribution Test
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A“m: Ak
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Figure: LASSO: Train on synthetic data and test on real data (BSDS500).
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Figure: Logistic: Train on synthetic data and test on real data (lonosphere).
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Outline

4. Diving Deeper on Explanation
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Further analysis

Recall LISTA-CP model:

Xi+1 = N, (X — W1k (Axy — b)).
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Further analysis

Recall LISTA-CP model:

Xi+1 = N, (X — W1k (Axy — b)).

Assume b = Ax, + noise, where supp(x.) is uniformly distributed.

Liu et al. [2019] shows that the recovery error and convergence rate only
depend on

.
sup max |w; a;|
g 1<izj<n

= W, 1 is the i-th column of W j; a; is the j-th column of A.
= W, ; are scaled such that wzkai =1foralli=1,2,---,n.

= One might minimize the non-diagonal terms of WIkA independently for
each k.

= An extension to mutual coherence in compressive sensing.
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Parameter reduction: tie 1//; across iterations
Inspired by the analysis, let us try W ;, tied for all k. Write it as W.
= Tied LISTA (TiLISTA) iteration:

X1 = Mo, (Xk — W (Axg — b)).
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Parameter reduction: tie 1//; across iterations
Inspired by the analysis, let us try W ;, tied for all k. Write it as W.

« Tied LISTA (TiLISTA) iteration:

Parameters:

We learn only step sizes {x}r and thresholds {6x}, and a single matrix W.

NMSE (dB)

I
W
=}

|
N
o

I
[
o

|
-}
=}

|
~
o

X1 = Mo, (Xk — W (Axg — b)).

reduce

O(mnK) — O(mn + K),

—— LISTA-CPSS
i TIiLISTA

'\9\\ i
S

A

012 3 4586 7 8 9 10111213 141516
Layer (k)

TiLISTA works even slightly better than LISTA-CPSS
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Observation

We scale W such that w; a; =1 for i = 1,...,n and then measure
maxi<izj<n |W; a;| in TiLISTA. Compare it to ALISTA (next slide).

0.304 — TiLISTA
-—- ALISTA

Mutual Coherence
o o o
NN
» o (5]

o
N
N

o
N
o

0 10 20 30 40 50 60 70 80 90 100
Training Step (k)

Good W needs to have small mutual coherence to A.
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Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .
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Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .
Two steps:
1. Compute approximately optimal W:

~ . T 2 T .
W € argmin HW AHF, st.wy;a;, =1, Vi=1,2,--- ,n,
WER’Ian"L

which is a convex quadratic program (QP).
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Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W:

~ . T 2 T .
W € argmin HW AHF, st.wy;a;, =1, Vi=1,2,--- ,n,
WER’Ian"L

which is a convex quadratic program (QP).

2. With W fixed, learn {~x, 01} from data

Parameters:
reduce

O(mn+ K) — O(K).

Training takes only minutes.
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Noiseless case
(SNR=0)

Noisy case
(SNR=30dB)

Numerical evaluation

NMSE (dB)
@

55 3 [—T1sTA ——— LISTACPSS

—~—— FISTA 4 TILISTA

-65 4 |-o—LISTA -©— = ALISTA

ST T T T T T T T T T T T T T T T
001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tterations / Layers (k)

0

5 e

10

@15

5720

@ 25

2 30

-35 4 [——ISTA -—L|STA-0P§|

40 3 [+—FISTA ~6—— TiLISTA

45 3 |-e—usTA -©— - ALISTA

A B B B B B B B B B S B B R B B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tterations / Layers (k)
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HyperLISTA [Chen et al., 2021]

Introduce

® 3 hybrid-thresholding operator to bypass pj largest entries and
soft-threshold the rest
® analytic formulas for the parameters

® three hyper-parameters subject to grid search
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HyperLISTA [Chen et al., 2021]

Introduce

® 3 hybrid-thresholding operator to bypass pj largest entries and
soft-threshold the rest
® analytic formulas for the parameters

® three hyper-parameters subject to grid search

HyperLISTA learns ¢, c2,c3 > 0 and use them to set

O = cl,uHAJr(Ax;€ — b)H17 soft threshold

Br = cap ||xk|lo, momentum stepsize

pr = csmin | log HAT—bH1 n |, pass-through count
[AT(Axk — by

The formulas are motivated by the analysis but use xj instead of x..
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HyperLISTA [Chen et al., 2021]

Introduce

® 3 hybrid-thresholding operator to bypass pj largest entries and
soft-threshold the rest
® analytic formulas for the parameters

® three hyper-parameters subject to grid search

HyperLISTA learns ¢, c2,c3 > 0 and use them to set

O
B

pr = csmin | log HAT—bH1 n pass-through count
[AT(Axg = D) )7 )

The formulas are motivated by the analysis but use xj instead of x..

cl,uHAJr (Axy — b)H soft threshold

1’

caft |[xk|los momentum stepsize

Parameters:
O(K) " 3,

Training can be done by grid search.
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HyperLISTA is fast and robust

0 0
-20
g g -10
S _40 )
o —e— ALISTA a 20| ™ ALISTA
g —60{ —*— ALISTA-MM-Symm % - —#— ALISTA-MM-Symm
Ada-LFISTA Ada-LFISTA
_80 NA-ALISTA 30 NA-ALISTA
—— HyperLISTA 7297 —— HyperLISTA
5 10 15 5 10 15
Layer Layer
(a) Noiseless. No train/test mismatch. (b) Sparsity ratio p changed to 0.15.
0 0 —e— ALISTA
== ALISTA-MM-Symm
=20 . Ada-LFISTA
) o —-10 NA-ALISTA
2 2 —+— HyperLISTA
u =401 = AlisTA bl
= MM s -
IS g
NA-ALISTA
~801 —— HyperLISTA -30
5 10 15 5 10 15
Layer Layer
(c) Variance o of non-zero elements changed to 2. (d) Noise level changed to SNR=30dB.

Good analytic rules have better generalization perf.
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Outline

5. Summary
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Discussions

Take-home messages:
® Use a black-box model with huge capacity works for solving optimization
problems
® Many parameters in these L20 models are actually redundant

® Math domain knowledge helps trimming L20 models and improve
generalization and interpretability.

42/42



Discussions

Take-home messages:

® Use a black-box model with huge capacity works for solving optimization
problems

® Many parameters in these L20 models are actually redundant

® Math domain knowledge helps trimming L20 models and improve

generalization and interpretability.

Math — Machine learning:
® Use a black-box model to discover new algorithms.
Machine learning — Math:

® Use math tools to understand the learned model.
® Improve the learned model.

® Get insights, develop new math algorithms.
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