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» Sensitive data is ubiquitous
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* Sensitive data is ubiquitous Our task: Data sanitization:
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Data Privacy in ML.:

1 Golle, Phlllppe “Revisiting the uniqueness of simple demographlcs in the US population.”,

Protecting privacy is non-trivial
- Anonymization vs. Deidentification

(ZIP code, date of birth, gender) is sufficient to identify 87% of US

population.2

Anonymous medical data

Voter registration data

ID QID SA

Name | ZIP code | Age | Sex Disease

Alice 47677 29 F | Ovarian Cancer
Betty | 47602 | 22 | F | Ovarian Cancer
‘Charles | 47678 | 27 | M | Prostate Cancer
David | 47905 | 43 | M | Flu
"""" Emily | 47909 | 52 | F | Heart Disease
" Fred | 47906 | 47 | M | Heart Disease

2Sweeney, L., “K-anonymity: A model for protecting privacy.”,

Name ZIP code Age | Sex
Alice 47677 29 F
 Bob | 47983 | 65 | M
"""""" Carol | 47677 | 22 | F
""""""" Dan | 47532 | 28 | M
 Ellen | 46789 | 43 | F
""""" Fabian | 47905 | 30 | M

International Journal of Uncerta/nty Fuzziness and Knowledge-Based Systems, 2002
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Proceedings of the 8th ACM Workshop on Privacy in Electronic Society, 2000. .




Data Privacy in ML.:

* Protecting privacy is non-trivial
- Anonymization vs. Deidentification

(ZIP code, date of birth, gender) is sufficient to identify 87% of US

population.2

Anonymous medical data

Voter registration data

QID SA

ZIP code | Age | Sex Disease
Ovarian Cancer
47602 22 F | Ovarian Cancer
| 47678 | 27 | M | Prostate Cancer
""""" 47905 | 43 | M |  Fu
""""" 47909 | 52 | F | HeartDisease
""""" 47906 | 47 | M | Heart Disease

Name

ZIP code

Age

Sex
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1 Golle, Philippe. “Revisiting the uniqueness of simple demographics in the US population.”, Proceedings of the 5th ACM Workshop on Privacy in Electronic Society, 2006.
2 Sweeney, L., “K-anonymity: A model for protecting privacy.”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002 4




Data Privacy in ML:

* Protecting privacy is non-trivial

- Reconstruction from features, models, gradients, etc.

™~
3 Iordps Somali ~ -
Translate from Irish
ag ag ag ag ag ag ag
ag ag ag

Your seul data is mine!

/ll\‘\

from the Bible (1 Kings 7:2)

English

And its length was
one hundred cubits
at one end

Parameter Server

Original Reconstructed

1 Carlini, Nicholas, et al. "Is Private Learning Possible with Instance Encoding?." IEEE Security & Privacy, 2021.
2 Carlini, Nicholas, et al. "Extracting training data from large language models." USENIX Security 21, 2021.
3Zhu, Ligeng,et al. "Deep leakage from gradients.”, NeurIPS, 2019.
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Rigorous Privacy Guarantee o | RS

1 Dwork. “Differential privacy.”, Automata, languages and programming, 2006
2 Mironov, llya, “Renyi Differential Privacy”, CSF, 2017



Rigorous Privacy Guarantee e | eSS
Differential privacy (DP)’
- Belonging to a dataset &~ Not belonging to it

A mechanism & is -DP iff for any neighboring datasets 1) and /)’ differing in a
single data point, and any § C range(</), we have:
Pr(o/(D) € S] < e - Pr[e/(D)) € S]+6
* Bound the maximal influence of each individual, introduce randomness
» Currently, people always turn it into bounding the divergencez:

D (A (D)|| (1)) < &

Properties
» Allows quantifying the privacy risk
» Compose gracefully for iterative methods
» Closed under post-processing

1 Dwork. “Differential privacy.”, Automata, languages and programming, 2006
2 Mironov, llya, “Renyi Differential Privacy”, CSF, 2017



Rigorous Privacy Guarantee e | eSS
Differential privacy (DP)’
- Belonging to a dataset &~ Not belonging to it

A mechanism & is -DP iff for any neighboring datasets 1) and /)’ differing in a
single data point, and any § C range(</), we have:
Pr[ (D) € §S] < e® - Pr|d(1D)) € S]+0

- Bound the maximal influence of each individual, introduce randomness
» Currently, people always turn it into bounding the divergencez:

D (A (D)|| (1)) < &

Properties
* Allows quantifying the privacy risk
. Compose gracefully for iterative methods ....... Samtlzeddatacanbefree|y ........

|Closed under post-processing] | used for downstream analysis

1 Dwork. “Differential privacy.”, Automata, languages and programming, 2006
2 Mironov, llya, “Renyi Differential Privacy”, CSF, 2017



Privacy-preserving Generation vs. Analysis
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How to Train a Model under DP? I Pretie it

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi1,...,xn}, loss function L(8) =
% >.. L(0,x;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 0y randomly
for t € [T| do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each 7 € L:, compute g¢(x;) + Vo, L(0:,x;)
Clip gradient
8:(z:) < g:(z;)/ max (1’ IIgt(gi)Ilz)
Add noise
gt % (Zz g:(x;) N(0,02CZI))
Descent
Ory1 < 0 — i1
Output 6 and compute the overall privacy cost (&, )
using a privacy accounting method.
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Algorithm 1 Differentially private SGD (Outline)

CISPA

EEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIII

I
\\/
=

20,0\

Input: Examples {zi1,...,xn}, loss function L(8) =
% >.. L(0,x;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 0y randomly
for t € [T| do

Take a random sample L; with sampling probability

L/N

Compute gradient

For each 7 € L:, compute g¢(x;) + Vo, L(0:,x;)

Clip gradient

8:(z:) < g:(z;)/ max (1’ IIgt(gi)Ilz)

Add noise

gt i (Zz g:(x;) N(0,02CZI))

Descent

Ory1 < 0 — i1

Output 6 and compute the overall privacy cost (&, )

using a privacy accounting method.

A

M(D) = f(D) + N(0,5% - 0°)
M : Gaussian Mechanism

D : Dataset

f : Real-valued function

Sr : Sensitivity

o : Noise scale

S = max||f(D) — f(D')]

D,D’

Sensitivity
Sy = max|g(:)]l2 = €

(2
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Privacy-preserving Generative Modeling
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Large chemical
L To generate molecules
space

with desired properties

Image source: “Generative chemistry: drug discovery with deep learning generative models”

“An armchair in the shape of an avocado”
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https://openai.com/blog/dall-e/

Generative Models

 Overview:

- GAN: Adversarial training v\ @ D(a:) real/fake

- VAE: Maximize variational lower T () 2
bound

- Flow-based: Invertible v f(;”) :
transforms of distributions .

* Diffusion models: Gradually add To|—» |21 |—» 05
Gaussian noise and reverse “

Image source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

enerator

G(z)

Inverse
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Generative Models s | iEsieiTEsaures o

« Overview:
- Latent variable model Z — &
» Learn a mapping from simple distribution p(2) to complex data distribution

Generated distribution True data distribution
p(x’) p(x)
Unit Gaussian
Deep
Q N GueneratorL__> / ’
z G(Z ) Loss
data space data space

12



Privacy-preserving Data Generation e | SRR
» Task:
* Learn to generate high-dimensional sanitized data
- Key:
 Rigorous privacy guarantee Differential Privacy
- High-dimensional data Deep Neural Networks
« General purpose Generality & Expressiveness
» Overview:

Generated distribution True data distribution

p(z') p(x)
Unit Gaussian
Deep
Q Generator
\ —
data space Loss data space

13



Existing Solutions

- Generative adversarial networks (GANSs):

« Gradient
g\ :=VeL(0p,00:)

- Gradient descent step
o+ .— g(t) _ . g(®)

1CISPA
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V) 0
G up VQGG(Z) D

QG —VGG

w L
Vg(z ) VD(CB)
sensitive data

zNN(O I)

—> non-private =~ —> sensitive — (&,0)-private

14
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- Generative adversarial networks (GANSs):

« Gradient
g\ :=VeL(0p,00:) 6, 0,

» Sanitization mechanism l T — Gz l D(z),
g == Myc(g")  E—— L
— clip(g®, C) + N(0,02C?T)

- Gradient descent step z ~ N(0,1) sensitive data

i+l .= 9t) _p. g®)

—> non-private =~ —> sensitive — (&,0)-private

15




Existing Solutions
- Generative adversarial networks (GANSs):

« Gradient

g\ :=VeL(6p,0c) O Op

l Tg‘é? Vo, G(2) l Tgp

« Sanitization mechanism

9" == Myc(g'") ML’ = L

= clip(g(t), C) + N(0,0°C*I) g m

- Gradient descent step 2z ~ /\T/(o, 1) sensitive data

i+l .= 9t) _p. g®)

—> non-private =~ —> sensitive — (&,0)-private

15



Existing Solutions
- Generative adversarial networks (GANSs):

« Gradient

g :=VeL(0p,0c) O Op

l Té‘é? Vo, G(2) l TQD

« Sanitization mechanism

g == M, c(g'") ML’ =2, L

= clip(g'¥ [C) + N(0,0°C*I) o YD)

clipping bound T T

- Gradient descent step z ~ N(0,1) sensitive data

i+l .= 9t) _p. g®)

—> non-private =~ —> sensitive — (&,0)-private

15



GS-WGAN: A Gradient-Sanitized Approach for Learning : |[CISPA
Differentially Private Generators (NeurlPS 2020)

...................
|
* Insight:
|

- Only the generator need to be publicly-released QG a5

r =G(2)
£

z N (O 1 ) sensitive data

accessible by adversary not accessible by adversary

—> non-private =~ —> sensitive — (&,0)-private

16



GS-WGAN: A Gradient-Sanitized Approach for Learning : '|CISPA
Differentially Private Generators (NeurlPS 2020)

........................
| |

* Insiaht:
gnt.

- Only the generator need to be publicly-released QG a5

« Our framework: l TQD = Ve, D(x)

1. Selectively applying sanitization mechanism
o . nE

z N (O 1 ) sensitive data

accessible by adversary not accessible by adversary

—> non-private =~ —> sensitive — (&,0)-private

16



GS-WGAN: A Gradient-Sanitized Approach for Learning

Differentially Private Generators (NeurlPS 2020)

* Insight:

» Only the generator need to be publicly-released

* Our framework:
1. Selectively applying sanitization mechanism

ICISPA
HG HD
l Tg'&? Vo, G(z) l TQD = Vo, D(x)
r =G(2) D(x)
s gradient ve vD()
T sanitization T
z~N (O, I ) sensitive data

accessible by adversary not accessible by adversary

—> non-private =~ —> sensitive — (&,0)-private

16




GS-WGAN: A Gradient-Sanitized Approach for Learning

CISPA

EEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIII

%/,1

Differentially Private Generators (NeurlPS 2020)
* Insight:

» Only the generator need to be publicly-released

* Our framework:

1.

Selectively applying sanitization mechanism

- Advantages:

1.

Maximally preserve the true gradient direction

Oc Op

gradient
T sanitization T
z~N (O, I ) sensitive data

accessible by adversary not accessible by adversary

—> non-private =~ —> sensitive — (&,0)-private
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GS-WGAN: A Gradient-Sanitized Approach for Learning : [CISPA
Differentially Private Generators (NeurlPS 2020)
* Insight:
- Only the generator need to be publicly-released 9G o,
» Our framework: 9c - VoG l TQD = Vg, D(x)
1. Selecti.vely app.I)./ir?g sar\itization mechani.sm = D(z)
2. Bounding sensitivity using Wasserstein distance 4’ — > r
Aup D
radlent G VD(CB)
o Advantages: samtlzatlon T

1. Maximally preserve the true gradient direction

z N (O, I ) sensitive data

accessible by adversary not accessible by adversary

—> non-private =~ —> sensitive — (&,0)-private

16




GS-WGAN: A Gradient-Sanitized Approach for Learning : [CISPA
Differentially Private Generators (NeurlPS 2020)
- ] Lipschitz property
* Insight: | [95P]o ~ 1 O — 1
» Only the generator need to be publicly-released 9G ‘9D
» Our framework: 9c - VoG l TQD = Vg, D(z)
1. Selectively applying sanitization mechanism v D(z)
2. Bounding sensitivity using Wasserstein distance 4“’ —_— r
Aup —
radlent G VD(CB)
o Advantages: samtlzatlon T

1. Maximally preserve the true gradient direction

z N (O, I ) sensitive data

accessible by adversary not accessible by adversary

—> non-private =~ —> sensitive — (&,0)-private

16
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GS-WGAN: A Gradient-Sanitized Approach for Learning
Differentially Private Generators (NeurlPS 2020)

Lipschitz property

Only the generator need to be publicly-released 9G HD
p o
* Our framework: VoG l TQD = Ve, D(z)
1. Selectively applying sanitization mechanism = D(z)
2. Bounding sensitivity using Wasserstein distance Q—L“’ — r
T | Yo
G VD(x
- Advantages: san‘i?flzlaeﬁén T

1. Maximally preserve the true gradient direction

2. Bypass an intensive and fragile hyper-parameter o N (O, 1 ) sensitive data

search for clipping value
3. Small clipping bias

accessible by adversary not accessible by adversary

—> non-private =~ —> sensitive — (&,0)-private

16
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GS-WGAN: A Gradient-Sanitized Approach for Learning
Differentially Private Generators (NeurlPS 2020)

- Decentralized (Federated) setting:

Each user train a discriminator on its sensitive dataset 0 G
locally D+

. . . AHP Op,
Communicate the sanitized gradient VoG

/]D = Vo, D(x)
D(x)
x =G g Z)
[ u >
Advantages: Dy |, r
User-level DP guarantee under an untrusted server A“P g o VD (x)

L . : gradlent \
Communication-efficient (gradients w.r.t. generated sanitization ‘ T ~ D, ‘
samples are more compact than gradients w.r.t model D

arameters’ K
p . ~U ) . . . Z ~ N(O7 I)
dim(gs ) < dim(f¢) < dim(6¢g) 4+ dim(6p)
accessible by adversary not accessible by adversary
—> non-private =~ —> sensitive — (&,0)-private

1 Augenstein et al., “Generative Models for Effective ML on Private, Decentralized Datasets”, ICLR 2020 L
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GS-WGAN: A Gradient-Sanitized Approach for Learning : [CISPA
Differentially Private Generators (NeurlPS 2020)

Session TA: Privacy Attacks and Defenses for ML CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

Datalens: Scalable Privacy Preserving Training via Gradient
Compression and Aggregation

- Adopted and extended by SOTA following works: Dt Gemsrst M

Training Differentially Private Generative Models
- Long, Yunhui, et al., "G-PATE: Scalable Differentially Private Data
Generator via Private Aggregation of Teacher Discriminators.” G-PATE: Scalabe ifterentally Privaie Data Generator v
(NeurlPS, 2021)

Yunhui Long'* Boxin Wang**  Zhuolin Yang' Bhavya Kailkhura®  Aston Zhang'

Carl A. Gunter' Bo Li'

! University of lllinois, Urbana Champaign ¢ Lawrence Livermore National Laboratory
{ylongd, boxinw2, zhuolinS, lzhang74, cgunter, lbo}@illinois.edu

- Cao, Tianshi, et al., "Don’t Generate Me: Training Differentially
Private Generative Models with Sinkhorn Divergence.”, (NeurlPS, e e i o e ety it e

accessible training data. However, large-scale data sharing has raised great peivacy
concerns. In this work, we propose a novel pravacy-preserving data Generative
2 O 2 1 model based on the PATE framework (G-PATE), aiming to train a scalable differ
entially private data generator which preserves high generated data wtility. Our
approach leverages generative adversarial nets to generate data, combined with
private aggregation among different discriminators to ensure strong privacy guaran
tees. Compared to existing approaches, G-PATE sigmficantly improves the use of
privacy budgets. In particular, we train a student data generator with an ensemble of
teacher discniminators and propose a novel private gradient aggregation mechanism
to ensure differential privacy on all information that flows from teacher discrims
nators to the student generator. In addition, with random projection and gradient
discretization, the proposed gradient aggregation mechanism is able to effectively

] L} L} L} L}
- Wang, Boxin et al., "Datalens: Scalable privacy preserving trainin T ey T
) "y n ensures differential privacy for the data generator. Empincally, we demonsirate the
superiority of G-PATE over prior work through extensive experiments. We show
that G-PATE is the first work being able to generate high-dimensional image data

via gradient compression and aggregation.” (CCS, 2021) it i s ity e e vy b (- < 1. O o s il

1 Introduction

Machine learning has been applied to a wide range of applications such as face recognition (3} 39211
22}, autonomous driving |26], and medical diagnoses [B, 20). However, most learning methods rely
on the availability of large-scale training datasets containing sensitive information such as personal
photos or medical records. Therefore, such sensitive datasets are often hard 1o be shared due to privacy
cancerns [44]. To handle this challenge, data providers somelimes release synthetic datasets produced
by generative models learned on the original data. Though recent studies show that generative
models such as generative adversarial networks (GAN) [14] can generate synthetic records that are
indistinguishable from the caiginal data distnibution, there is no theoretical guarantee on the privacy
protection. While privacy definitions such as differential privacy 9] and Rényi differential privacy
[27] provide rigorous privacy guarantee, applying them to synthetic data generation is nontrivial.

Recently, two approaches have been proposed to combine differential privacy with synthetic data gen
eration: DP-GAN [35] and PATE-GAN [37]. DP-GAN modifies GAN by training the discnminator
using differentially private stochastic gradient descent. Though it achieves privacy guarantee due to

*Equal contribution

15¢h Confereace o Neural Information Processing Systenss (NewrlPS 2021)

18
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Challenges

2020

Progress of non-private generation

0 oy )

oy O D

2021

2020

2019

2018

_5)

10

9

Progress of private generation (¢,6) = (10

19
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» Fitting the complete high-dimensional data distribution is complicated
* Deep generative models are data demanding
* Privacy constraints

» No enough data to solve such a difficult problem ‘

20



Private Set Generation with Discriminative Information : _S!3PA
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(NeurlPS 2022)

- EXisting approaches:

Aim at fitting the complete data distribution
Optimize deep generative models

Suboptimal utility: <85% for MNIST with (,0)=(10, 107>

« Our approach:
» Target at common downstream tasks (e.g., classification) Generally easier

Directly optimize a set of representative samples Better convergence

~10% downstream test accuracy improvement over SOTA Useful samples

21



Private Set Generation with Discriminative Information : [€!SPA
(NeurlPS 2022)
» Target:

Optimize for training downstream Neural Network classifier

 Basic idea:

Gradient-based coreset generation':?2
DP stochastic gradient descent (DP-SGD)

v
SR T

inner loop outer loop - sensitive =P (¢,6)-private

1Zhao, Bo, et al., “Dataset condensation with gradient matching.”, ICLR, 2021. 28
2/Zhao, Bo, et al., “Dataset condensation with differentiable siamese augmentation.”, ICML, 2021



Convergence rate

Private Set Generation with Discriminative Information

(NeurlPS 2022)
- Comparison to SOTA:

Utility for downstream classification task (train on synthetic; test on real)

MNIST FashionMNIST

ConvNet LeNet AlexNet VGGI1 ResNetl8 MLP ConvNet LeNet AlexNet VGGI1 ResNetl8 MLP

Real 99.6 99.2 99.5 99.6 99.7 08.3 93.5 88.9 91.5 03.8 94.5 86.9

DP-CGAN 50.2 52.6 52.1 54.7 51.8 54.3 50.2 52.6 52.1 54.7 51.8 54.3

GS-WGAN 84.9 83.2 80.5 87.9 89.3 74.77 54.7 62.7 55.1 57.3 58.9 65.4
= DE;Menrf lllllllll 85!2 lllll 87‘2 lllll 8§i4 llllll & ]l'] lllllll 8 1 h3 llllll 85 ‘hQ lllll 7 -?wé llllll q 7'9 lllll §-4-'9 llllll ZQ.L llllll ﬁﬁl’z lllll 73]1 g
: Ours (spc=10) 94.9 91.3 90.3 93.6 94.3 86.1 75.6 68.0 66.2 74.7 72.1 62.8 =
= Ours (spc=20) 95.6 93.0 92.3 94.5 94.1 87.1 77.7 68.0 59.1 76.8 70.8 62.2 .

Ours ours

100 - i

80

o~
L2
-
—

40

Test Accuracy (%)

Ours (spc=10)
Ours (spc=20)

20

—— GS-WGAN
— DP-CGAN
0
0 2 4 6 8 10
Epsilon
(a) MNIST

Test Accuracy (%)

60

ot
—
=)

40

w
—_—
j—

Ours (spc=10)
Ours (spc=20)
- GS-WGAN
— DP-CGAN

20
J

)i
10
0

0 2 4 6 8 10
Epsilon

(b) FashionMNIST
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» Sub-optimal downstream utility £l

 Better visual quality
« Slow convergence
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* Privacy-preserving Generation is important

Flexibility & Transparency: downstream analysis, reproducible research
»  Applications: federated learning

* Privacy-preserving Generation is non-trivial:

Exploit the progress in general generative modeling
Co-design of private- and non-private models
Make better usage of “prior knowledge”

Task (downstream model)
Data distribution

31
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Thanks for your attention!

Presenter: Dingfan Chen
Supervisor: Prof. Dr. Mario Fritz
Affiliation: CISPA - Helmholtz Center for Information Security



