Physics of deep learning: Fi I ] I - I-
Understanding grokking

via the lens of physics

Ziming Liu, PhD student @ MIT, advised by Max Tegmark
April 27, 2023 @ Westlake University
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What is grokking in everyday life?

) grok (HIE)

verb INFORMAL + US

gerund or present participle: grokking

understand (something) intuitively or by empathy.
"because of all the commercials, children grok things immediately”

e empathize or communicate sympathetically; establish a rapport.
'nestling earth couple would like to find water brothers to grok with in peace”




What is grokking in science?

Sir Isaac Newton

Apples fall to the ground. \
Universal gravitation

Earth orbits around the Sun./

Generalisation !




What is grokking in ML?

Modular Division (training on 50% of data)
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“Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets” by Power et al.
https://mathai-iclr.github.io/papers/papers/MATHAI 29 paper.pdf
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Grokking in everyday life and in ML

Modular Division (training on 50% of data)
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“Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets” by Power et al.
https://mathai-iclr.github.io/papers/papers/MATHAI 29 paper.pdf
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Grokking
Puzzle 1: delayed generalization

Grokking VS Common training curves

Modular Division (training on 50% of data)
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Validation accuracy is much delayed than training accuracy. Training and validation accuracy go up simultaneously.

“Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets” by Power et al.
https://mathai-iclr.github.io/papers/papers/MATHAI 29 paper.pdf
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Grokking
Puzzle 2: dependence on training size

Steps until generalization for product in abstract group Ss
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From Figure 1 of "Grokking: Generalization beyond
overfitting on small algorithmic datasets." by Power et al.
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Grokking setup:
Learning binary operation

alolb|=|c|

From Figure 1 of "Grokking: Generalization beyond
overfitting on small algorithmic datasets." by Power et al.



Grokking setup:
Learning binary operation

Split the table into
train & val datasets

From Figure 1 of "Grokking: Generalization beyond
overfitting on small algorithmic datasets." by Power et al.



Grokking setup

Logits for a, b, c, ...
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Why is Grokking interesting?
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Might give practitioners hope that neural networks will eventually magically generalize

Alethea Power 1 month ago

'Did someone forget to turn off the computer?" & That's exactly how it
happened. One of my coworkers was training a network and he forgot to
turn it off when he went on vacation. When he came back, it had learned. So
we dug in and tried to figure out how and why it learned so long after we ..
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N Questions raised by grokking

| "ﬂx No Magic!!!
/5)

X
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1. How do networks generalize at all on
algorithmic datasets”?
- Representation

2. Why does grokking (generalization) time depend strongly
on the training set fraction?
- Training size controls the speed of representation learning

3. Under what conditions is generalization delayed?
- Improper hyper-parameters that prohibit representation

12
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Q1: How do networks generalize at all on algorithmic datasets?

A1l: Representation.
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Predict 8

Toy Model
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Peek in a generalisation case

Addition & toy model, 100% test accuracy
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Representation is key to generalization!

Addition & toy model

If 5+9 =14
IS In the train set

3 then the toy model will
2 generalize to 6 + 8

0 Because E;+ Ey = Eg+ Eg
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Representation is key to generalization!

Modular addition & non-toy
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Representation is key to generalization!

Modular addition & non-toy

embeddings over training

using PCA
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Q2: Why does grokking (generalization) time depend on
training size?

A2: Training size controls the speed of representation learning.



The dynamics of representation

Addition & toy model
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Effective theory
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Compare theory and experiment

Addition & toy model

mpirical: trajectory
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Grokking time dependence on train size
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Q3: Under which conditions is generalization delayed?

A3: Improper hyper-parameters that prohibit representation.



Grokking from slow

representation learning

Addition & toy model
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Summary

1. Observed that generalization is associated with the model
learning structured representations.

2. Developed an effective theory for learning dynamics of

representations (embeddings) in a toy setting. Our theory
exhibits a phase transition in train data fraction.

3. Made phase diagrams describing how learning dynamics
depend on hyperparameters, allowing us to control grokking.
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Still, we want to understand:

Q1: The origin of grokking from dynamics on loss landscape: Why
IS generalization much delayed after overfitting?
LU mechanism

Q2: The prevalence of grokking: Can grokking occur on datasets
other than algorithmic datasets”
Yes
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Grokking due to train/test mismatch
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Loss Landscape
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Reduced 1D landscape

{(w) = f(w*(w)), wherew"(w) = |zlxrg”m:in ltrain (W)

Any quantity of interest, e.g., train/test loss/error.
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LU mechanism
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Toy: Teacher-student

Same architecture
Teacher network < » Student network
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Random seed: O Random seed: 1

Standard initialisation After standard initialization, multiply all weights by o



Teacher-student: Landscape

weight space

minima on the sphere
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Teacher-student: Grokking

Note: weight norm is not constrained here.
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Teacher-student: Grokking

Note: weight norm is not constrained here.
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MNIST: landscape analysis

Model: MLP

training error
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1.00

Accuracy

MNIST Grokking With Varying a, 1000 Train Points, y=1e-4

MNIST: Grokking
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More datasets
IMDb (Sentiment Analysis) + LSTM
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Wait a second ...

1. For algorithmic datasets, standard initialisation is sufficient to produce
grokking. But on standard datasets we induce grokking by manually
Increasing Initialisation scale.

2. Since we can induce grokking on standard datasets, we you remove
grokking from algorithmic datasets”



Modular addition: Weight norm evolution

Accuracy

1L Transformer on Modular Addition (p=113)
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Remove grokking by small & constrained scale

1L Transformer on Modular Addition (p=113)
Constrained Norm a = 0.8
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Outlook

1. Grokking in large language models?

2. More applications of reduced loss landscape?
3. Theory of LU mechanism?

4. Task-dependent Initialisation?



Physics & Deep Learning

Grokking

<nowledge 1 Thermodynamics (phase diagrams)
2. Classical mechanics (particle interaction)

Approach 3 |dentifying useful variables (weight norm)
4. Toy examples & controlled experiments



Backup:
Representation learning vs grokking



Algorithmic: Representation learning

representation messiness m

Initialization (0 iterations) Overfitting (1000 iterations) = Representation Learning 820000 iterations)
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Figure 1 of “Towards Understanding Grokking: An Effective Theory of Representation Learning”, NeurIPS 2022.
Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, Mike Williams



Algorithmic: Landscape analysis

representation messiness m

w*(w, m) = argmin l;ain (W, m),
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Algorithmic: data size/weight decay dependence

training loss = 0.02 contour
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MNIST: landscape analysis
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