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Amazing Progress of ML/Al

“Space robot studying a book in front of Stanford”

Write a haiku from the perspective of a
copywriter who is feeling sad that Al might
diminish the value of the written word

Words on a screen,

Once valued, now just a blur

Machine takes the pen.

Image Classification on ImageNet
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The challenge of Today:

(Million $)
Building ML Applications at SOTA scale is expensive!

Further scaling is facing non-linear bottlenecks.




Bottleneck: Communications & Data Movement

Distributed training at scale is communication-intensive.

6./B Parameters
@ 1.20E+22

GPT-3 Floating Point Ops.

32 Machines, 4x A100 GPU each
Each machine send+recv 4PB data
100Gbps = 23/ Communication Time
10Gbps = 230/ Communication Time

~200h Computation Time

175B Parameters
S |

GPT-3 Floating Point Ops.

196 Machines, 8x A100 GPU each
Each machine send+recv 12PB data
100Gbps = 279/ Communication Time
10Gbps = 2790/ Communication Time

~400h Computation Time

(Future) 10x

further scaling
requires fast
connections between
10 machines.

Becoming challenging

Instances, Volunteer Computes, etc.).

(Today) Model training today is largely restricted to centralized data centers with fast
network connections. Hard to use cheaper alternatives (Non 1st tier clonds, Spot

even for data center.

NVIDIA DGX SuperPOD:
Up to 256 GPUs




and Decentralized Learning.




Communication Bottlenecks across Infrastructure

communication becomes slower, open up more choices (and some can be cheaper)

AAzu re

Google Cloud

Data Center (Multi-cloud) Spot Instances Serverless Environment Decentralized Network

The more we can optimize communications, the more choices we have
when building our infrastructure.






Data
* (ImageNet) 1.3M Images (est. 160+ GB)
* (GP1-3) 300 Billion Tokens (est. 2+ 1B)

Model
* (GPI-2) 1.3 Billion Parameters (2.6 GB jp16)
* (GPI-3) 175 Billion Parameters (350GB jp16)

Compute
® (GPI-2) est. 2.5 GFLOPS/ token
® (GPT-3) est. 0.4 TFLOPS/ token




Data Parallel SGD

Data Source

Sensor
DataBase

Data Source

Sensor
DataBase

Data Source

Sensor
DataBase
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System Optimizations and Relaxed Algorithms

Amazing . '
ﬁ

Uber
L ]
. . Decentralized
) Training
° o
hil ByteDance Asynchronous
BytePS Training
NVIDIA
A pex Communication
Quantization
BT Microsoft
DeepSpeed Communication
Sparsification



Baseline: Centralized, Synchronous, Lossless, SGD

X 2] [®]

Synchronous Average

= |sync model () [e=mmmmmmaa- -

|:|
= get data()
- get_grad (ﬁlﬁ)

= update (, El; ___________ Centralized

T.ossless Data Movement

Idea

* Distribute batch gradient calculation to multiple

wortkers;

* Synchronize workers with a central server

(or AllReduce).

— Mathematical Formulation —

Xt+1 = X — Y Z gi(x¢; a;)

i=1.n
Convergence Goal 1: Keep
This Similar

0(1/vnT)

o .
-
] ]

mEmm Computation
B Communication

System Profile Goal 2: Make
this Faster
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System Optimizations

. = Existing Systems:

p»-

Vanilla - 9a - g3 - g2 - J1 T e F, F,
Ploch B, By B, By Uirse F, B F E

Optimize the standard DP-SGD computation:

all_reduce ' a0 93 E: 92,91 E
:. Bucket 1~ -:. Bucket2 i
overs  (WE 00 W0 B0 0w B oG R R LR
Push 4 4 43 32221T1T1T1T2334

Pull 4443 32221T1T1T1T233H4

12



get data()

get grad (|§|,|§|)

Relaxed Algorithms

Synchronous Average

sync model () je====

Asynchronous Average

Decentralized Average

Asynchronous

Decentralized

ﬂ U‘p da t e (I EL ______________ | mm————————————d g - 1
Lossy Data Movement Lossless Data Movement Lossless Data Movement
Mathematical Xer1 = X¢ — VG (Xp—1p Q1) Xei—1+ Xpi+ Xp i1 _
Formulation Xer1 = X — Y0 Q(9:(xe, 1)) A Xev1,i = 3 —vg(xesa;)
i=1.n staleness caused by async
A/ 1.5
Convergence 0(1/vnT He/VT) 0(1/VnT _|_ O(/NnT Hp/T™>)
Quantization error: € p: network topology constant

13




Attempt T

Automatic System Optimization for Relaxed Algorithms

Amazing
Systems

lit! ByteDance
BytePS

NVIDIA
Apex

B Microsoft

DeepSpeed

ﬁ
GAP: Current Amazing
Systenms Don't Support

Recently Developed
Amazing Technigues

O
o O
"0

OUR GOAL.:
Distributed Learning
with SOTA

Communication

Optimization
Techniques.

Amazing algorithm

Decentralized
Training

Asynchronous
Training

Communication
Quantization

Communication

Sparsification

BAGuA: Scaling up Distributed Learning with System Relaxations

Shaoduo Gan*, Jiawei Jiang', Binhang Yuan,
Ce Zhang
ETH Ziirich, Switzerland
{firstname lastname}@inf.ethz.ch

ABSTRACT

Recent years have witnessed a growing list of systems for dis-
tributed data-parallel training. Existing systems largely fit into two
paradigms, i.e., parameter server and MPLstyle collective opera-
tions. On the algorithmic side, researchers have proposed a wide
range of techniques to lower the communication via “system re-
laxations™: izati ization, and ication delay.
However, most, if not all, existing systems only rely on standard
synchronous and asynchronous stochastic gradient (SG) based opti-
‘mization, therefore, cannot take advantage of all possible optimiza-
tions that the machine learning community has been developing
recently. Given this emerging gap between the current landscapes
of systems and theory, we build BAGua, a MPI-style communication
library, providing a collection of primitives, that is both flexible and
modular to support state-of-the-art system relaxation techniques
of distributed training. Powered by this design, BAGua has a great
ability to implement and extend various state-of-the-art distributed
learning algorithms. In a production cluster with up to 16 machines
(128 GPUs), BAGUA can outperform PyTorch-DDP, Horovod and
BytePS in the end-to-end training time by a significant margin
(up to 2x) across a diverse range of tasks. Moreover, we conduct
a rigorous tradeoff exploration showing that different algorithms
and system relaxations achieve the best performance over different
network conditions.

PVLDB Reference Format:
Shaoduo Gan, Xiangru Lian, Rui Wang, Jianbin Chang, Chengjun Liu,
Hongmei Shi, Shengzhuo Zhang, Xianghong Li, Tengxu Sun, Jiawei Jiang,
Binhang Yuan, Sen Yang, Ji Liu, Ce Zhang. BAGUA: Scaling up Distributed
Learning with System Relaxations. PVLDB, 15(4): 804 - 813, 2022.
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1 INTRODUCTION

The increasing performance of distributed machine learning sys-
tems has been one of the main driving forces behind the rapid
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advancement of machine learning techniques. From AlexNet [35]
in 2012 to GPT-3 [11] in 2020, each leap in model quality is enabled
by the growth of both the model size and the amount of data one can
train amodel with, along with a rapid increase in computations [47].
Behind this improvement are two major enabling factors: hardware
accelerations (e.g, GPUs and TPUs) and the development of effi-
cient and scalable distributed training algorithms [4, 7,72, 73, 76]
It is not unfair to say that a scalable distributed training system is
the cornerstone of modern deep learning techniques.

In this paper, we scope ourselves and focus on data parallel train-
ing, one of the most popular distributed training paradigms in which
the data set is partitioned across different workers and the model fits
into a single device. Not surprisingly, recently years have witnessed
a growing list of systems for distributed data parallel training. Ex-
isting systems fit into two paradigms, following the seminal work
done by Li et al. [38] on parameter server and Sergeev et al. [56] on
using MPI collective operations such as Allreduce. Both paradigms
have enabled industrial-scale distributed training systems [47):
Adam (Microsoft) [13], early TensorFlow (Google) 3], Poseidon
(Petuum) [77), Angel (Tencent) [32], and BytePS (ByteDance) [33]
are based on parameter server, while PyTorch-DDP (Facebook) [39],
Mariana (Tencent) [82], MALT (NEC Labs) [37], NCCL (NVIDIA) [2],
and Horovod (Uber) [56] are based on MPI-style collective operations.
These systems often involve joint efforts from machine learning,
systems, and data management communities, and have been suc-
cessful in making distributed training easier and more scalable.

On the theory and algorithm side, researchers have also been
active in improving the performance of standard synchronous and
asynchronous stochastic gradient (SG) based algorithms. Rightly
noticing that a major system bottleneck is communication, re-
searchers have proposed a range of techniques to lower the com-
munication overhead mainly by “relaxing” certain aspects of the
communication. Examples include (1) communication compression
(e.g., quantization [4, 7, 73, 76), sparsification [5, 68, 70, 72], and
error ion (67)), (2) icati ion [34,
40, 42, 43, 64, 66), and (3) communication delay (e.g., LocalSGD [21,
44, 61, 69]) and asynchronization [43, 52, 60, 80, 81). These tech-
niques are optimized for different workloads and different network
conditions. These techniques together hold promises to significantly
decrease the communication overheads, in terms of both bandwidth
and latency, or increase the tolerance to the existence of stragglers.

In this paper, we are motivated by one emerging gap between the
current landscapes of systems and theory: Despite the recent advance
of distributed learning theory and algorithm on system relaxations,
most, if not all, existing. ly rely on standard. d

[VLDB 2022]
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It is not easy to translate algorithmic

flexibility into system performance gain.
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1 import torch

Bagua: System Design & Implementation

oithub.com/BaguaSys/bagua

. . MPI-Style
* A modular design to accommodate the Tra_mmg Task  Algorithm (Jses., BAGUA FCS: Full Prec., Centarlized, Syne
diversity ofdiﬁferent algorithms and a Fwd ;’4 } Communication FDS: Full Prec., Decentarlized, Sync
. . %% 00 . .. . . ,
communication patterns. g Bwd Hook Primitives LCS: Low Prec., Centralized, Sync
a LDS: Low Prec., Decentarlized, Sync
= An optimization framework that ) . Memory
applies automatically to an algorithm g Manager
implemented in BAGUA. = > Execution
d Manager
End user: simply wrap up your training script Dga NN NN

with BAGUA. Specify the algorithm you want

to use /

/ Optimizer: antomatically optimize

E.g., Decentralized, Low Precision Alg. communication and computations

from bagua import bagua_init, DefaultAlgo - U4 Q Wy - U3 Q W3 - (]2 Q W, - U1 Q wq Fl
¢ def main():

args = parse_args()

# define model and optimizer .

model = MyNet().to(args.device) l Am‘omatzc F Forward
optimizer = torch.optim.SGD(model.parameters(),lr=args.1lr) H

# transform to BAGUA wrapper ComPUtatlon

model ,optimizer = bagua_init(model,optimizer , DefaultAlgo,

is-intra) ---- F - BaCkward
# train the model over the dataset 1 Computat|0n
for epoch in range(args.epochs): |' ----------- .|| ----------- ~|
for b_idx,(inputs, targets) in enumerate(train_loader): H
outputs = model(inputs) 1 U4 3 Q W4,W3:: UZ 1 Q Wy, W]: Gradlent
tl)g:sim;::rzzr._:n;;gz;EntropyLoss(outputs,targets) : 2 " z ' g Communication
loss.backward () 1 BUCket 1 "" BUCket 2 :

optimizer.step() A U MOdel
Update 16



https://github.com/BaguaSys/bagua

Bagua Results

Setup: 16 machines, each 8 1100 GPUs. Connected via {10Gbps, 25Ghps, 100Gbps} networks.

\,?8() 100 ’\950
60 o 70 §’92.5
5 40 BAGUA S 50 BAGUA £ 600 BAGUA
=20 QSGD (8bit) T o 1-bit Adam < 1-bit Adam
2 g
00 25 50 75 0(] 100 200 8L)'00 5000 10000
Epoches Steps Steps
(a) VGG16 (b) BERT-LARGE Finetune (c) BERT-BASE Finetune
6
g \ BAGUA g
w & Decentralized SGD g BAGUA Bagua
EQ £ Async SGD —+— PyTorch-DDP
3 —— Horovod
’—
: 20 40 60 % 1000 2000 3000 *— BytePS
Epoches Steps
(d) Transformer (e) LSTM+AlexNet

Same Convergence with Relaxed Algorithms

Network Conditions VGG16 BERT-LARGE BERT-BASE Transformer LSTM+AlexNet

100 Gbps 1.1X 1.05X 1.27X 1.2% 1.34X
25 Gbps 1.1X 1.05X 1.27X 1.2X 1.34X
10 Gbps 1.94X 1.95X 1.27X 1.2X 1.34X

Szonificant speed-up over { Torch-DDP,Horovod 32bits.
Horovod 16bzts, BytePS}

Supporting a diverse set of algorithms can provide

significant improvenents over existing systenss.

17



https://github.com/BaguaSys/bagua

From Cloud to Decentralized Compute Resource

Instance Size

p4d.24xlarge

p4de.24xlarge
(preview)

vCPUs

96

Instance
Memory
(GiB)

1152

1152

This is $4.09 /hour for

© Interruptible + O On-Demand EeRleg ANVOX TR 2
. an A100 GPU.
GPU - GPU etwor m7424  datacenter:40660  Netherlands, NL
Bandwidth Motherboard
A100 memory <L, 1X A1 00 SXM4 PCIE4016x  20.8GB/s
(Gbps) 19.5 rriops  80GB AMD EPYC 7542 ..
vastal yovoupatts OO ougmacpu 129712068
320 GB 400 ENA and 7207 host:33081 Not Specified
8
HBMZ EFA 1 X A1 00 SXM4 PCIE4.0,16x 19.8GB/s
19.5 triops  396GB AMD EPYC 7763 ...
vestal  \jax CUDA: 118 1;:8;5:/’: 640/256cpu 121/483GB
8 640 GB 400 ENA and
HBM2e EFA 1 ""‘!‘II i “ -t . Torea S 08XP3P
= . 1 X A1 00 SXM4 PCIE 4.0,16x 22.5GB/s
e 19.5 Triops 40GB AMD EPYC 7513 ...
S -8 vastal  \jax CUDA: 117 1;:8(?5:/’: 320/128cpu 64/2586B

Available TFlops

71,509 TFlops

G Status Global View

Available GPUs

# 536

Total TFlops

124,428 TFlops

ETH Zirich

Open Science Grid
University of Wisconsin
Stanford University
TACC

4X 8X 8X+

1628 Mbps
602 Mbps 0 ports

Storage
583MB/s  270.0GB

M1 Mbps
V321 Mbps 250

nvme
1008 MB/s  813.1

M1 Mbps K
V317 Mbps 4 ports

DELL PERC
1218MB/s  238.4GB

$0.500/hr
60.

This 1s what you
can get from a
decentralized

GPU pool!

A4 4 oirei peiapii
48.9DLP/S/hr  99.69%

MAKE BID
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Attempt 2

These algorithmic
building blocks nee

to be put togethe

CocktailSGD: Fine-tuning Foundation Models over S00Mbps Networks

Jue Wang "' Yucheng Lu”’? Binhang Yuan' Beidi Chen® Percy Liang* Chri

her De Sa2 Christopher Re*

Ce Zhang'

Abstract

Distributed training of foundation models,
especially large language models (LLMs), is
communication-intensive and so has heavily relied
on centralized data centers with fast interconnects.
Can we train on slow networks and unlock the
potential of decentralized infrastructure for
foundation models? In this paper, we propose
COCKTAILSGD, anovel communication-efficient
training framework that combines three distinct
compression techniques—random sparsification,
top-K sparsification, and quantization—to achieve
much greater compression than each individual
technique alone. We justify the benefit of such
a hybrid approach through a theoretical analysis
of convergence. Empirically, we show that
COCKTAILSGD achieves up to 117x compression
in fine-tuning LLMs up to 20 billion parameters
without hurting convergence. On a 500Mbps
network, COCKTAILSGD only incurs ~ 1.2x
slowdown compared with data center networks.

1. Introduction

In recent years, foundation models (Bommasani et al.,
2021), including large language models (Brown et al., 2020;
Chowdhery et al., 2022; Bommasani et al., 2021; Zhang
et al., 2022; Liang et al., 2022; Scao et al., 2022), have
enabled rapid advancement for various machine learning
tasks, especially in natural language processing (Brants et al.,
2007; Austin et al., 2021). Such a significant improvement
on quality has been fueled by an ever-increasing amount
of data and computes that are required in training these
models (Kaplan et al., 2020). Today, training even modest
scale models requires a significant amount of compute: For
example, fine-tuning GPT-J-6B (6 billion parameters) over

'Equal contribution 'ETH Ziirich, Switzerland >Cornell Univer-
sity, USA *Carnegie Mellon University, USA *Stanford University,
USA. Correspondence to: Jue Wang <juewang @inf.ethz.ch>.

Proceedings of the 40" I ional Confe e on Machil
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

merely 10 billion tokens would require 6 petaflops-days: 8
A100 GPUs running at 50% capacity for 5 days!

When training foundation models in a distributed way,
communication is the key bottleneck in scaling. As an
example, fine-tuning GPT-J-6B over 10 billion tokens with a
batch size of 262K tokens over 4 machines (each with 2 A100
GPUs) would require 915.5 TB data being communicated
during the whole training process! The computation time
for such a workload is 114 hours, which means that we
need to have at least 20 Gbps connections between these
hines to bring the con ication overhead to the same
scale as the computation time. Not surprisingly, today’s
infrastructure for training and fine-tuning foundation models
are largely centralized, with GPUs connected via fast
100Gbps—400Gbps connections (Microsoft, 2020).

Such a heavy reliance on centralized networks increases
the cost of infrastructure, and makes it incredibly hard to
take advantage of cheaper alternatives, including tier 2 to
tier 4 clouds, spot instances and volunteer compute. For
example, while volunteering compute projects such as Fold-
ing@Home can harvest significant amount of computes for
embarrassingly parallelizable workloads (e.g., 2.43exaflops
in April 2020 (Larson et al., 2009)), it is challenging to
harvest these cycles for foundation model training due to
the communication bottleneck. Recently, there has been an
exciting collection of work focusing on the decentralized
training of neural networks, including those that are algo-
rithmic (Lian et al., 2017; Ryabinin & Gusev, 2020; Diskin
et al., 2021; Ryabinin et al., 2021; Yuan et al., 2022; Jue
etal.) as well as system efforts such as Training Transformer
Together (Borzunov et al., 2022b), and PETALS (Borzunov
et al., 2022a). However, despite of these recent efforts,
communication is still a significant bottleneck, and one can
only compress the communication by at most 10-30x in
these recent efforts without hurting convergence. To fully
close the gap between centralized infrastructure (100Gbps)
and decentralized infrastructure (100Mbps-1Gbps), we need
to decrease the communication overhead by at least 100x!

Luckily, there have also been rapid development of
communication-efficient optimization algorithms and
these efforts provide the foundational building blocks of
this paper. Researchers have proposed a wide range of

[ICML 2023]




Three Methods of Compression

1 |fpl6
tp16

d |16
16d bits

top-K

Values

16K bits

Indices
Klog,d bits
or d bits

Expensive to compute
and to encode Indices

Random Sample

Values

16pd bits

Indices

1 random seed

Might not keep top
values as in Top-K

Quantization

Values

qd bits

Only provide up to 16x
compression; hard to go aggressive
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It is very hard to reach 100X compression

ratio with a single method.



CocktailSGD: Mixture of Compression Methods

(1
N o
omn.
Sht W,
(1 ) J/
Xe X t( :_l 1 Accummulate

t

As long as Communication fully fills

the Comm. Slot, no slow down
caused by communication.

Idea: A Mixture of communication compression techniques.

Looking at A¢:

* It has 1-step staleness // asynchrony

o 1
// local training: compress ~ — X

* At t, randomly pick p% parameters to communicate ey
0

i . .
* For selected parameters, let 5t( ) be local model updates since last communication:

// topK: compress ~ = x

« 889 = top—K9%(8{") —

60 = Quantize(5.”, qbits)

. . 16
// Quantization: compress ~ — X

» Communicate: Ay = Z(Yt(i)
l
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“Cocktail SGD”:

(n)
t
Comm.

Slot A,

x M Accumulate
t+1

t

As long as Communication fully
fills the Comm. Slot, no slow
down caused by communication.

Data Parallel over 1Gbps

Different communication compression techniques complement
each other and compose well!

25 3.3

LocalSGD (100x)

3 LocalSGD (100x)

D

A ”"/M

Cocktail SGD (100x)

Training Loss
N

N

N Q1

1.75 AllReduce (fp16) . AllRedude VY™ 6)
15 GPT-J-6B Instruct Tuning L8 GPT-NeoX-20B Instruct Tuning
0 563 1125 1688 2250 0 563 1125 1688 2250
E 15000 - § 15000 - = AllReduce
H g - CocktailSGD
g g tovee Data parallel
§ %00 N over ~500 Mbps
) e Infinity 10Gbps 1Gbps 500Mbps 200Mbps : e Infinity 10Gbps  1Gbps 500Mbps 200Mbps network!
Bandwidth Bandwidth

(b) GPT-J-6B (c) GPT-NeoX-20B
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Large language model training goes

beyond data parallelism.
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Decentralized Training of Foundation Models

Decentralized training of FM: the network is 1T00x

slower, but the pre-training throughput is only

1.7~3.5x% slower!

Decentralized fine-tuning of FM: AQ-SGD
communication-efficient pipeline training with

activation compression.

Decentralized Training of Foundation Models in
Heterogeneous Environments

Binhang Yuan', Yongjun He'*, Jared Quincy Davisf, Tianyi Zhang?, Tri Daot,
Beidi Chen!, Percy Liang?, Christopher Re!, Ce Zhang!

TETH Ziirich, Switzerland !Stanford University, USA
{binhang.yuan, yongjun.he, ce.zhang}@inf.ethz.ch
{tz58, jaredq, beidic, trid, pliang, chrismre}@stanford.edu

Abstract

Training foundation models, such as GPT-3 and PaLM, can be extremely expensive, often involving tens
of thousands of GPUs running continuously for months. These models are typically trained in special-
ized clusters featuring fast, homogeneous interconnects and using carefully designed software systems that
support both data parallelism and model/pipeline parallelism. Such dedicated clusters can be costly and
difficult to obtain. Can we instead leverage the much greater amount of decentralized, hetemgeneuus, and
lower-bandwidth interconnected compute? Previous works the set-
ting focus on relatively small models that can be trained in a purely data parallel manner. State-of-1 Lhe art
schemes for model parallel foundation model training, such as Megatron, only consider the homogeneous
data center setting. In this paper, we present the first study of training large foundation models with model

ism in a i regime over a network. Our key technical contribution is a
scheduling algorithm that allocates different computational “tasklets” in the training of foundation models
to a group of decentralized GPU devices connected by a slow heterogeneous network. We provide a formal
cost model and further propose an efficient evolutionary algorithm to find the optimal allocation strategy.
‘We conduct extensive experiments that represent different scenarios for learning over geo-distributed de-
vices simulated using real-world network measurements. In the most extreme case, across 8 different cities
spanning 3 continents, our approach is 4.8 x faster than prior state-of-the-art training systems (Megatron).

Code Availability: https: //github. com/DS3Lab/DT-FM

1 Introduction

Recent years have witnessed the rapid development of deep learning models, particularly foundation mod-
els (FMs) [1] such as GPT-3 [2] and PaLM [3]. Along with these rapid advancements, however, comes
computational challenges in training these models: the training of these FMs can be very expensive — a
single GPT3-175B training run takes 3.6K Petaflops-days [2]— this amounts to $4M on today’s AWS on
demand instances, even assuming 50% device utilization (V100 GPUs peak at 125 TeraFLOPS)! Even the
smaller scale language models, e.g., GPT3-XL (1.3 billion parameters), on which this paper evaluates, re-
quire 64 Tesla V100 GPUs to run for one week, costing $32K on AWS. As a result, speeding up training
and decreasing the cost of FMs have been active research areas. Due to their vast number of model pa-
rameters, state-of-the-art systems (e.g., Megatron[4], Deepspeed|[5], Fairscale[6]) leverage multiple forms
of parallelism [4, 7, 8, 9, 10, 11]. However, their design is only tailored to fast, homogeneous data center
networks.

* Equal contribution.
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Abstract

Communication compression is a crucial technique distributed learni iate their
communication bottlenecks over slower networks. Despite recent intensive studies of gradient compression
for data parallel-style training, ing the for models trained with pipeline parallelism
is still an open problem. In this paper, we propose AC-5GD, a novel activation compression algorithm for

ipeline training over slow networks. Different from previous efforts
in activation compression, instead of compressing activation values directly, AC-SGD compresses the changes
of the activations. This allows us to show, to the best of our knowledge for the first time, that one can still
achieve O(1/ VT) convergence rate for non-convex objectives under activation compression, without making
gradient that do not hold for deep learning models with non-linear activation
functions. We then show that AC-SGD can be optimized and implemented efficiently, without additional end-to-
end runtime overhead. We evaluated AC-SGD to fine-tune language models with up to 1.5 billion parameters,
compressing activations to 2-4 bits. AC-SGD provides up to 4.3 end-to-end speed-up in slower networks,
without sacrificing model quality. Moreover, we also show that AC-SGD can be combined with state-of-the-art
gradient to enable “end d : All
between machines, including model gradients, forward activations, and backward gradients are compressed into
lower precision. This provides up to 4.9x end-to-end speed-up, without sacrificing model quality.

Code Availability: https://github. com/DS3Lab/AC-SGD

1 Introduction

Recent efforts in improving communication efficiency for distributed learning have significantly decreased the
dependency of training deep learning models on fast data center networks — the gradient can be compressed
to lower precision or sparsified [1, 2, 3, 4], which speeds up training over low bandwidth networks, whereas
the communication topology can be decentralized [5, 6, 7, 8, 9, 10], which speeds up training over high latency
networks. Indeed, today’s state-of-the-art training systems, such as Pytorch [11, 12], Horovod [13], Bagua [14],
and BytePS [15], already support many of these communication-efficient training paradi
However with the rise of large foundation models [16] (e.g., BERT [17], GPT-3 [18] and CLIP[19]),
ion efficiency via becomes more challenging. Current training systems
for foundation models such as Megatron [20], Deepspeed [21], and Fairscale [22], allocate different layers of
the model onto multiple devices and need to communicate — in addition to the gradients on the models — the

*Equal contribution.

[NeurlPS 2022-(a)l

[NeurlPS 2022-(b)]
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Accommodate Communication in a Decentralized network

A bi-level scheduling algorithm based on an extended balanced graph partition to
estimate the communication cost:
= Data parallel communication cost: nodes handling the same stage need to
exchange gradients;
= Pipeline parallel communication cost: nodes handling nearby stages for the same
micro-batch need to communicate activation in the forward propagation and
gradients of the activation in the backward propagation.

(d) perfect matching corresponds
C, to how devices in C; and devices

Device d, in C; communicate in a pipelin%
Device d,
(a) Communication (b) Each partition C; deals (c) Coarsened graph G (e) Open-loop-traveling-
Topology Graph G with one stage, running data decoding the cost of salesman provides a

over N devices parallel within each partition pipeline parallel pipeline structure



AQ-SG D Converge better
minf (): = Be.pF (b(a(§, x@), x®)) I

Quantization Error Model change
Direct quantization only works to some degree. of Diff smaller smaller

Activation Diff Activation change
Smaller smaller

* (Al: Lipschitz assumptions) We assume that V f, V(fob) and a are L ¢, L ¢4, and £,-Lipschitz, respectively,

d”(f across enoc h S . . recalling that a function g is L4-Lipschitz if
S EPC Quantize Diff lo(@) -9l <Lyle—yll, Vavy.
S h ou /d d Iminis h Furthermore, we assume that ¢ and f o b have gradients bounded by C, and Cjy., respectively, i.e.
s [Va(z)|| < Ca, and |V (fob)(z)|| < Cop-

* (A2: SGD assumptions) We assume that the stochastic gradient g, is unbiased, i.e. E¢[g¢ (z)] =V (), for
all z, and with bounded variance, i.e. E¢||g¢(z) -V f(z)|?> <o?, for all z.

Theorem 3.1. Suppose that Assumptions A1, A2 hold, and consider an unbiased quantization function Q(x) which

satisfies that there exists cq < 1/1/2 such that E||z—Q(z)|| < cg ||z, for all 2.} Let y= m be the learning

rate, where

C— 4CQ€G(1+CG)LfObN .
\/1-2¢5
Then after performing T updates one has
1 (C+Ls)(f(z1)—f*) | 0®+(c@CaCrob)?
- E|V 2< + . 3.1

[NeurIPS 2022-(b)] -



AQ-SGD Results

* End-to-end training performance over different networks. x represents divergence.
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AQ-SGD Results

* Convergence and Throughput of AQ-SGD combined with gradient compression.
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Some Small Steps Towards Decentralized ML.
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GPT-JT: Instruct Tuned GPT-J (6B) over 1Gbps Network

HELM (RAFT) Score

D at a S Ource S MOdel & Training InstructGPT davinci v2 (175B%)

GPT-JT (6B)

i UL2, Chﬁlﬂ Of thOU.ght . GPT_J 6B Anthnj:)i-j-uLnrj‘/Ib\;A‘;:aﬁf:E;
. TNLG v2 (530B)
e Natural Instruction -Granot (79

GPT-3 davinci v1 (175B)

* Public Pool of Prompts (P3) * Cocktail SGD e o e

OPT (175B)

Cohere large v20220720 (13.1B)
GLM (130B)

BLOOM (176B)

OPT (66B)

1Gbps network; 4-way data parallel; 2x A100 each e 050
InstructGPT ba::az: j:,);(.zaoBB‘;
Cohere medium v20220720 (6.1B)
Cohere small v20220720 (410M)
. InstructGPT curie v1 (6.7B%
30% end-to-end overhead, compared with o b

InstructGPT ada v1 (350M*)

1OOGbpS data—center network 0.3 0.4 05 0.6 08

EM (Exact Match)

ji-;} Hugging Face Q_ Search models, datasets, users...

We are able to do useful things over slow networks!
@ togethercomputer/GPT-JT-6B-v1 T ®like 163




Available GPU Hours

16k

14k

12k

10k

University

Open Science Grid

ETH:(irich
®

Open Research on the Together Decentralized Cloud

Connecting idle compute across academic institutions.

SHELM

11 billion tokens
60K GPU Hours
10 Open Models

BLOOM 176B July 2022
TOpp 11B October 2021
GPT-J 6B July 2021
GPT-NeoX 20B February 2022
GLM 130B August 2022
uL2 20B October 2022
T5 11B February 2020
OPT 175B June 2022
OPT 66B June 2022
YaLM 100B June 2022
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Summary

* Communication is a key bottleneck of distributed learning, both for

centralized data center network and decentralized environments.

*We can develop Algorithms to alleviate communication bottlenecks:

Personal page:

https://binhangyuan.github.io/site

*Innovation of Systems is need to unleash the full potential Algorithms:
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