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Today’s Over-parameterization journey - the good, the bad, the ugly

Function space theory
Motivation

Over-
parameterization Why generalize well?

DL
theory Helps robustness or not?
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Over-parameterization: more parameters than training data
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Over-parameterization: more parameters than training data

Figure: Larger models make increasingly efficient use of in-context information: source from Open AI.
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DNNs: the good in fitting ...

Figure: DNN Training curves on CIFAR10, from [1]

◦ A gap between theory and practice:
I DNNs can fit random labels
I SGD: zero training error and low test error
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DNNs: the bad in robustness...

(a) Invisibility [2] (b) Stop sign classified as 45 mph sign [3]

the ugly in over-parameterization?

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@epfl.ch Slide 5/ 25



DNNs: the bad in robustness...

(a) Invisibility [2] (b) Stop sign classified as 45 mph sign [3]

the ugly in over-parameterization?

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@epfl.ch Slide 5/ 25



A toy example: curve fittingd 19
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Figure: Test performance on curve fitting: source from Open AI.
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Benign overfitting and double descent

benign overfitting [4, 5, 6]:
I model is very complex
I perfectly fit noisy data and generalize well

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=

N∑
k=1

akφ(x ; vk ) where φ(x ; v):=e
√
−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

Figure: classical learning theory vs. double descent: source from [7].
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Typical architecture of DNNs

Initialization Formulation
LeCun initialization β1 =

√
1
d

, β = βL =
√

1
m

He initialization β1 =
√

2
d

, β = βL =
√

2
m

NTK initialization β = β1 =
√

2
m

, βL = 1

Xavier initialization β1 = 2
m+d

, β = 1
m

, βL = 2
m+1
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Why function space theory is needed? (lazy training regime)

FNN,m =

{
fm(x;Θ) =

m∑
i=1

ai max (〈wi, x〉 , 0) : ai ∈ R, wi ∈ Rd

}

W(0) W(t)

lazy training regime

Lecun, He

NTK

supt∈[0,+∞)

∥
Wl(t)−Wl(0)

∥
F∥

Wl(0)
∥

F
→ 0

Figure: Training dynamics of two-layer ReLU NNs under different initializations [8, 9, 10].
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Why function space theory is needed? (non-lazy training regime)

FNN,m =

{
fm(x;Θ) =
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1
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Figure: Training dynamics of two-layer ReLU NNs under different initializations [8, 9, 10].
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Research Overview: Today’s talk

Neural tangent kernel (NTK) [8]Random features model [11]

Kernel Methods Neural Networks

◦ lazy training ◦ non-lazy training

over-parameterization

I generalization of NNs
◦ [LSC, NeurIPS22] why over-parameterized NNs generalize well under SGD training?

I robustness of NNs
◦ [ZLCC, NeurIPS22] Over-parameterization helps or hurts robustness of NNs?
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Obstacle in modern ML setting

Modern ML setting
comparably large: #training data n, #parameters m, input dimension d

I high dimensional setting [12, 13]: c 6 {d/n, m/n} 6 C
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comparably large: #training data n, #parameters m, input dimension d

I high dimensional setting [12, 13]: c 6 {d/n, m/n} 6 C

ridge regression: β̂ = (X>X + λI)−1X>y ?−→ β? := arg min
β

E[(y − β>x)2]

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@epfl.ch Slide 13/ 25



Obstacle in modern ML setting

Modern ML setting
comparably large: #training data n, #parameters m, input dimension d

I high dimensional setting [12, 13]: c 6 {d/n, m/n} 6 C

ridge regression: β̂ = (X>X + λI)−1X>y ?−→ β? := arg min
β

E[(y − β>x)2]
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Consistency of estimator?
I classical low-dimensional setting (d fixed and n → ∞): 3

I classical high-dimensional setting (d � n) if sparsity [14]: 3

I n, d, m are comparably large: 7

for what sample size, and what data distributions, the estimator can generalize well?
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Problem settings

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2

W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

random features mapping [11]:

ϕ(x) := 1√
m

σ

(
Wx√

d

)
, Wij ∼ N (0, 1)

adaptive step-size SGD with one-pass iterate-averaging

at = at−1 + γt[yt − 〈at−1, ϕ(xt)〉]ϕ(xt), t = 1, 2, . . . n .

I adaptive step-size: γt := γ0t−ζ , ζ ∈ [0, 1)
I iterate-averaging: ān := 1

n

∑n−1
t=0 at
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Results: Bias and variance decomposition

Theorem [LSC, NeurIPS22]: Under sub-Gaussian data, label
noise with bounded variance, we haveOn the Double Descent of Random Features Models Trained with SGD

excess risk EX,W ,ε〈η̄n,Σmη̄n〉

Bias EX,W 〈η̄biasn ,Σmη̄
bias
n 〉

B3: η̄bXWn
O(nζ−1)

B2: η̄bXn − η̄bXWn{
O(n2(ζ−1)m)

O( 1
m

)

B1: η̄biasn − η̄bXn
O(nζ−1)

Variance EX,W ,ε〈η̄varn ,Σmη̄
var
n 〉

V3: η̄vXWn{
O(nζ−1m)

O(nζ−1 + n
m

)

V2: η̄vXn − η̄vXWn{
O(nζ−1m)

O(1)

V1: η̄varn − η̄vXn{
O(nζ−1m) if m 6 n

O(1) if m > n

Figure 1. The roadmap of proofs.

4. Proof Outline and Discussion
In this section, we first introduce the structure of the proofs
with high level ideas, and then discuss our work with pre-
vious literature in terms of the used techniques and the
obtained results.

4.1. Proof outline

We (partly) disentangle the multiple randomness sources
on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators
Σm and Σ̃m in Section 3.2, and provide the respective (bias
and variance) upper bounds in terms of multiple randomness
sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.
Recall Σm = Ex[ϕ(x)⊗ ϕ(x)] and Σ̃m = Ex,W [ϕ(x)⊗
ϕ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , (8)

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (9)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn :=

1
n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "de-

terministic" version of ηbiast : we omit the randomness
on X (data sampling, stochastic gradients) by replacing
[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

covariance operator: fast decay
I covariance operator:

Σm := Ex[ϕ(x) ⊗ ϕ(x)] (r.v.)
I expected covariance operator:

Σ̃m := Ex,W [ϕ(x) ⊗ ϕ(x)]

(a) Bias . B1 + B2 + B3 (b) Variance . V1 + V2 + V3 (c) excess risk
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error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

covariance operator: fast decay
I covariance operator:

Σm := Ex[ϕ(x) ⊗ ϕ(x)] (r.v.)
I expected covariance operator:
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(a) Bias . B1 + B2 + B3 (b) Variance . V1 + V2 + V3 (c) excess risk
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From kernel methods to neural networks

W(0) W(t)

lazy training regime
Lecun, He NTK

mean field regime
Xavier

non-lazy training regime

W(t)

∞

kernel methods
I high dimensional kernel methods: only learn linear function! [12]
I cannot efficiently approximate non-smooth functions

Follow-up:
I function space: function space for neural networks, e.g., Barron space [15, 16]
I benign overfitting: Benign overfitting in deep neural networks under lazy training [ZLCLC, ICML23]

I Benign overfitting leads to huge sensitivity! [4]
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Over-parameterization helps or hurts robustness?

Helps! [17] Hurts! [18, 19, 20]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@epfl.ch Slide 17/ 25



Over-parameterization helps or hurts robustness?

Helps! [17] Hurts! [18, 19, 20]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@epfl.ch Slide 17/ 25



Over-parameterization helps or hurts robustness?

Helps! [17] Hurts! [18, 19, 20]

I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability)
The perturbation stability of a ReLU DNN f(x; W) is

P(f, ε) = Ex,x̂,W
∥∥∇xf(x; W)>(x − x̂)

∥∥
2

, x̂ ∼ Unif(B(ε, x)) ,

where ε is the perturbation radius.
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I initialization (e.g., lazy training, non-lazy training)
I architecture (e.g., width, depth)

Definition (perturbation stability: non-lazy training regime)
The perturbation stability of a ReLU DNN f(x; W) is

P(f, ε) = Ex,x̂
∥∥∇xf(x; W)>(x − x̂)

∥∥
2
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Main results (Lazy-training regime)

Theorem[ZLCC, NeurIPS22]: · . Func(m, L, β)
Assumption Initialization Our bound for P(f, ε)/ε Trend of width m [1] Trend of depth L [1]

‖x‖2 = 1

LeCun initialization
(√

L3m
d

e−m/L3
+

√
1
d

)
(

√
2

2 )L−2 ↗ ↘ ↘

He initialization
√

L3m
d

e−m/L3
+

√
1
d

↗ ↘ ↗

NTK initialization
√

L3m
d

e−m/L3
+ 1 ↗ ↘ ↗

[1] The larger perturbation stability means worse average robustness.

Takeaway messages: the good (width), the bad (depth), the ugly (initialization)

I width helps robustness in the over-parameterized regime
I depth helps robustness in LeCun initialization but hurts robustness in He/NTK initialization
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Experiments: robustness under lazy-training regime

Metrics Ours (NTK initialization) [19] [20]

P( f, ε)/ε

√
L3m

d
e−m/L3

+ 1 L2m1/3
√

log m +
√

mL 2
3L−5

2
√

L

24 25 26 27 28 29 210 211 212 213 214

Width
0.0

0.1

0.2

0.3

0.4

0.5
L=2
L=6
L=10

(a) LeCun initialization
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(b) He initialization
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(c) NTK initialization
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Proof sketch in robustness

P( f , ε) := Ex,x̂,W ‖∇x f(x)(x − x̂)‖2
≤ Ex,x̂,W ‖∇x f(x)(x − x̂) − WL DL−1WL−1 · · · D1W1(x − x̂)‖2 + Ex,x̂,W ‖WL DL−1WL−1 · · · D1W1(x − x̂)‖2

≤ Ex,x̂,W ‖[∇x f(x) − WL DL−1WL−1 · · · D1W1](x − x̂)‖2 +

√√√√√Ex,x̂,W

∥∥∥∥∥∥WL DL−1WL−1 · · · D1W1(x − x̂)︸                                      ︷︷                                      ︸
:=tL

∥∥∥∥∥∥
2

2

. ε

( √
L3m2β2

1β2
Le−m/L3

+
√

moβ2
1β2

L

)
γL−2 ,

where we use EW
‖tl‖2

2∥∥tl−1

∥∥2

2

= γ2 with γ := β/
√

2
m

.
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Main results (Non-lazy training regime)

A sufficient condition for DNNs
For large enough m and m � d, w.h.p, DNNs fall into non-lazy training regime if α � (m3/2

∑L

i=1 βi)L.

Remarks: ◦ L = 2, α = 1, β1 = β2 = β ∼ 1
mc with c > 1.5

Theorem (non-lazy training regime for two-layer NNs)
Under this setting with m � n2 and standard assumptions, then

perturbation stability ≤ Õ
(

n

mc+1.5

)
, w.h.p

Remarks: ◦ width helps robustness in the over-parameterized regime in both lazy/non-lazy training regime
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Main results (Non-lazy training regime)
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Theorem (non-lazy training regime for two-layer NNs)
Under this setting with m � n2 and standard assumptions, then

perturbation stability ≤ Õ
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n

mc+1.5

)
, w.h.p
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Experiment: Non-lazy training regime

lazy training ratio κ :=

∑L

l=1 ‖Wl(t) − Wl(0)‖F∑L

l=1 ‖Wl(0)‖F
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(a) lazy training ratio vs. epochs
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Conclusion(I) function spaces vs. models

Understanding from a function space perspective!

RKHS kernel methods1

hyper-RKHS hyper-kernel methods2

Barron space two-layer NNs3

Besov space deep NNs4

bivariate form

variational form

smoothness

Fanghui Liu web: https: // www. lfhsgre. org/ fanghui.liu@epfl.ch

Research Statement
Understanding generalization in machine learning algorithms: a function approximation perspective

Understanding and predicting the unknown and uncertain real world from past observations is
always an enduring appealing and outstanding topic in artificial intelligence. My research attempts
to achieve this ultimate and ideal goal by concentrating on theoretical understanding generalization
properties of machine learning algorithms. The “generalization” terminology means that a machine
learning model, learned from the past observations, is able to generalize on unseen data in super-
vised learning. This concept is also suitable to sequential decision, e.g., reinforcement learning (RL)
that an agent needs to learn how to predict and control unknown and often stochastic environments,
i.e., exploration.

Achieving this goal requires to study what regularizer Ω(f) can be defined and controlled on the
functions defined by models, and what function space F is suitable for learning.

The commonly used function space in learning theory is the reproducing kernel Hilbert space
(RKHS) [Aro50], which provides the ability to approximate functions by nonparametric functional
representations. The point-wise convergence property makes RKHS an appealing choice in ma-
chine learning problems with nice theoretical guarantees in an approximation theory view. My
major research interests starts with kernel learning algorithms, kernel approximation for scalabil-
ity, and theoretically understanding machine learning algorithms in under- and over-parameterized
regimes.

random
features

kernel
methods

neural
networks

scalability

over-parameterization
NTK

RKHS hyper-RKHS Barron space Besov space

kernel methods hyper-kernel methods two-layer NNs DNNs

kernel learning kernel learning double descent generalization, RL

Laplace in E Laplace in N Laplace in N

Legendre in ϵ = E
N Legendre in ρ = N

V
Legendre in ρ = N

V

1 Current achievements
My research endeavour has led to several scientific contributions at the flagship conferences and
journals in machine learning. Here I center around the work in recent years on learning in hyper-
RKHS [LSH+21, JMLR21], kernel approximation via random features, double descent [LSC22,
NeurIPS22], deep neural function approximation [LVC22, NeurIPS22].

1.1 Learning with kernels and random features

Learning in hyper-RKHS: The structure of RKHS is determined by the reproducing kernel
k, but selecting appropriate kernels is not a trivial task. More importantly, RKHS is not large
enough, for example, to approximate a single ReLU neuron with an ε-approximation error, kernel

Page 1 of 6

1 [LHGYL, JMLR20; LHCS, TPAMI21; LLS, AISTATS21]
2 [LSHYS, JMLR21]
3 [LSC, NeurIPS22; LHCS, TPAMI22; LHCS, AISTATS21]
4 [LVC, NeurIPS22; ZLCC, NeurIPS22; WZLCC, NeurIPS22, ZLCLC, ICML23]
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Conclusion(II) the good, the bad, the ugly

good bad ugly
kernel methods analysis performance curse of dimensionality
neural networks performance analysis over-parameterization
generalization benign overfitting catastrophic overfitting model complexity

robustness width depth initialization

deep RL 
theory

function approximation

DL theory robustness

Over-parameterization double descent

Function space theory initialization
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I IEEE ICASSP 2023 Tutorial - “Neural networks: the good, the bad, and the ugly”
I CVPR 2023 Tutorial - “Deep learning theory for computer vision”

Thanks for your attention!

Q & A
my homepage www.lfhsgre.org for more information!
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