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Adversarial vulnerability

Alps: 94.39%

Puffer: 97.99% Crab: 100.00%

[Dong et al. CVPR 2018]



Adversarial examples in physical world
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Not only in computer vision
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Movie Review (Positive (POS) <> Negative (NEG)) S ff3’ @
Original (Label: NEG) The characters, cast in impossibly contrived situations, are totally estranged from reality. s %
Attack (Label: POS) The characters, cast in impossibly engineered circumstances, are fully estranged from reality. E | el T (O cenee g
Original (Label: POS) It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical z ®
wave that life wherever it takes you. © s
Attack (Label: NEG) It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that >
life wherever it takes you.
SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))
Premise Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.
Original (Label: CON) The boys are in band uniforms.
Adversary (Label: ENT)  The boys are in band garment.
Premise A child with wet hair is holding a butterfly decorated beach ball. Original P
Original (Label: NEU) The child is at the beach. Data Adversarial
Adversary (Label: ENT)  The youngster is at the shore. Sample Example
NLP (Jin et al. AAAI 2020)
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Reinforcement Learning (Lin et al. IJCAI 2017)

Audio (Carlini and Wagner. S&P 2018)



Not only in computer vision
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Modified LIDAR Scene Detection Output

LIDAR (Tu et al. CVPR 2020)
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3D Point Cloud (Lang et al. 2020)
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Representative Example

VvC

OD: Given a string a, what is the length of a.
00: (strlen a)
AD: Given a string b, what is the length of b.
AO: (strlen a)

OD: Given a number a, compute the product of all the numbers from 1 to a.

00: (invokel (lambdal (if ( < argl 1 )1(x( self( —-argl 1 ))
argl ))) a)

AD: Given a number a, compute the product of the numbers from 1 to a.

AO: ( » a 1)

SR

OD: consider an array of numbers, what is reverse of elements in the given array that are
odd

00: (reverse ( filter a ( lambdal ( == ( % argl 2 )1))))

AD: consider an array of numbers, what equals reverse of elements in the given array that
are odd

AO: (reduce ( filter a ( lambdal ( == ( % argl 2 )1))))

Code Generation (Anand et al. 2021)
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2) Encoder transforms paths 3) Detector classifies an action
into low dimension feature sequence to judge if the

vectors through an RNN system is attacked

Recommender System (Cao et al. SIGIR 2020)



Trade-off between robustness and accuracy

Empirically:

Standard training Adversarial training
clean accuracy 95% clean accuracy 85%
robust accuracy 0% robust accuracy 50%

Where the trade-off stems from?

Theoretically:
Exists in some simple cases

[Zhang et al. ICML 2019; Tsipras et al. ICLR 2019]



What is an accurate model?

An accurate model refers to the one with low standard error:

RStandard — Epd(ac) [KL (pd(y‘x) Hp9 (y‘ﬂl‘)ﬂ

data distribution model distribution

Optimal solution: pg«(y|x) = pa(y|x)



What is a robust model?

A robust model refers to the one with low robust error:

RMadry — Epd(ac) x’%lg%{x) KL (pd(y‘w) Hp9 (y‘il?/))

Optimal solution: pg+(y|x) # pa(y|T)

[Madry et al. ICLR 2018]



Trade-off naturally comes!

An optimally accurate model is NOT an optimally robust model

‘ paradox

pd(y|x) is not an optimally robust model w.r.t. itself???!!!

f



Did we properly define robustness?

RMadry — Epd(a;) {x/%lg?x) KL (pd(y‘w) Hpe (y‘f/)):|

f differentiable surrogate

0-1robusterror: E,, . { max 1 (Vy(z") # yd(a?))}

v/ €B(z) / \

Yo(x) = argmax, pg(y|z) Va(x) = argmax,, pq(y|r)
hard label of model distribution hard label of data distribution
(i.e., predicted label) (i.e., true label)



Did we properly define robustness?

0-1 robust error: ]Epd(x) { mg,%c ) 1 (ye(g;’) + yd(:l?))}
r’'eB(x

true label is invariant in B(x) f

Self-consistent 0-1 robust error: [, ;) { max 1 (Vo(2) # yd(az’))}
* no assumption on pg(y|z) v'eB(x)
* allows for flexible B(x)



Did we properly define robustness?

RMadry — ]Epd(:c) |: max KL (pd(y‘$)Hp9(y‘:E,)):|

x'€B(x)
differentiable surrogate Unreasonable
(pa(y|z) is invariant in B(z)) ~ (overcorrection

towards smoothness)

Ep,(z) { max 1 (YVp(2) # yd(il?))}

' € B(x)

f true label is invariantin B(z)  Reasonable

E,, (2) { max 1 (Vy(z') # yd(f'))}

x'€B(x)



Self-COnsistent Robust Error (SCORE)

Rscore(0) = Ep, (2) L,Télgié) KL (pd(y\ﬂf/)Hpe(y\x,))}

f differentiable surrogate

Ep, (2) [ max 1 (YVp(z') # yd(xl))}

r'€B(x)

RMadry (f) invariance = Rgscore(0) equivariance



Self-COnsistent Robust Error (SCORE)

Rscore(f) = Epg () ,félg@) KL (pd y\iﬁ Hpe ?JW ))

« Optimal solution: Pe- (Y|) = pa(y|z)

(self-consistency, i.e., Pa(y|x) is the optimally robust
model w.r.t. itself under supervised learning framework)

* Keep the paradigm of robust optimization



Toy demo (self-consistency)
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Toy demo (robust optimization)

1
09r
0.8+
0.7+
0.6+
05+
04r
037
02+
0.17

RStandard (‘9)

0
-5

4 -3-2-10123 456 78

500 steps (converged)

1

097
087
0.7
0.6
057
047
037
027
0.1

0\\\\\\\\\\\\\
S5 4-3-2-101223456 78

RMadry (9)

1

500 steps (converged)

09
0.8
0.7r
0.6
05¢
04r
03¢
02
0.1r

Rscorg(0)

0\\\\\\\\\\\\\
S5 4-3-2-101223456 78

500 steps (converged)

6 training pairs, mimics the finite-sample form

Standard error has the same optimal solution as SCORE, but
does not enjoy robust optimization in finite-sample cases



In practice, how to optimize SCORE!?

Directly applying first-order optimizers requires:

VKL (pa(ylz)||pe(ylz))

_ B pd(ylz) .
—Epd(yu){ V. log pe(y|z) + <10g p@(y\x)> Ve logpd(ylév)}

model gradient data gradient

* |nitial experiments using score matching are of high variance
 More advanced score matching like [Chao et al. ICLR 2022] could be explored



Goodbye KL divergence!

Substitute KL divergence with any distance metric D

d)es not satisfy

e Symmetry: D(AHB) = D(BHA)
* Triangle inequality: D(AHC) < D(AHB) + D(BHC)

Typical distance metrics include HA — BHP



Goodbye KL divergence!

Substitute KL divergence with any distance metric D

Ritadey () =Ep, () max D (Pa(ylz)||pe(ylz"))

~

RYSDCORE(H): p g () x/%lg%(x)D (pd(y‘fl)Hpe(y‘m/))




Upper and lower bounds for SCORE Q

.‘

A

Theorem |I;

‘RMadry(e) C1D| < RSCORE(Q) < RMadry(e) + CD?

WhereiD — Epd(x) max D (pd y\:z: de y‘ﬂf ))}

'€B(x)

intrinsic property of data distribution, indicates
the (Madry) robust error of ps(y|z) itself



Upper and lower bounds for SCORE Q
i < :

R?CORE(H) S Rﬁadry(e) T CD?

Theorem |I:

where CP = E,, (4 max D (pd(y\az)de(y\x’))]

* Upper bound: minimizing SCORE without estimating V/ . log pd(y\az)



Upper and lower bounds for SCORE

Q
ig]g

Theorem |I:

‘Rﬁadry(e) o C1D| < R?CORE(H)

where CP = Ep,(z) | max D (pd(y\w)de(y\ZC’))}

x'€B(x)

* Lower bound: indicates the overfitting phenomenon



Upper and lower bounds for SCORE
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Extending to composite function of distance

Theorem 2:

REors(?) — C7 < 67" (R{0,(0))

¢() is @ monotonically increasing convex function, e.g., square function

Examples of ¢ o ‘D include squared error (SE) and JS-divergence



Composite function of distance empirically works better

. [r.=0.1 | l.r.=0.05 | [.r.=0.01

Loss Alias
Clean PGD |Clean PGD |Clean PGD
P — Q|2 4£2-dis. |75.91 52.16|77.98 52.74 78.45 51.13
P — Q|1 #1-dis. |58.51 43.87|64.88 46.77|70.02 47.76
P — Qllco foo-dis. |58.34 43.71|59.75 45.02|65.65 46.36
\/JS(P|Q) JS-dis. [53.06 40.08 | 55.27 41.86|68.50 46.49
JS(P||Q)  JS-div. |79.41 51.75|81.27 51.85 80.12 49.10
KL(P||Q) KL-div.|82.74 53.02 83.21 51.52|82.65 47.45
||P—Q||? - 79.87 50.96|81.49 52.00 81.26 47.51
|P— Q|5 SE 80.59 54.63|83.38 54.01 81.43 51.13




PGD-AT and TRADES are equivalent (under D)

Theorem 3: For 5 > 1

RMadry(e) < RTRADES (97 6) < (1 + 25) Madry(e)

» Similar as the equivalence among /,,-norms

* |nduce the same topology of loss landscapes in parameter space [Conrad 2018]



Back to KL divergence with new insights

A bridge between KL divergence and distance metrics:
Pinsker’s inequality

1
1P = Q|2 < KL(P||Q)

[Csiszar and Korner 2011 ]



Back to KL divergence with new insights

Corollary I:

Ropp(0) — O < 1/2- Rataauy (6)
\

original KL-based robust error




Explaining overfitting and early-stopping

Ropp(0) — O < /2

minimized in previous work

RMadry (‘9)

S




Explaining overfitting and early-stopping

R ope(0) — O < 1/2 Rutadry (0)

condition for optimal solution

& [Réoore®) =01




Explaining overfitting and early-stopping

R ope(0) — O < 1/2 Rutadry (0)

indicates early-stopping

(")
2

S
Cﬁl S \/2 ) RMadry(‘g) — RMadry(e) Z




Explaining overfitting and early-stopping

RYoni(0) = 0= po(ylz) = pa(y|z)



Explaining overfitting and early-stopping

RYoni(0) = 0= po(ylz) = pa(y|z)

where Ot = () x}g}%ﬁc) KL (Pd(y|$)de(y|$/))




Explaining overfitting and early-stopping
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Explaining semantic gradients (for adversarial training)

Theorem 4: (under mild condition)

RglCORE(H) — Ré%candard(e)_l_
2 By, o) || VapaVa(@)|2) = VapoVa(@)[2)]],| + ofe)

\

alignment between model gradient and data gradient

where Vq(r) = argmax, pq(y|x)



Explaining semantic gradients (for adversarial training)

Clean images Vi logpg(Va(z)|z) | Vilogpe(x,Vy(z)) —~V; logps(z)




Empirical performance

Table 2. Classification accuracy (%) on clean images and under
AutoAttack (£, € = 8/255). Here we use ResNet-18 trained
by PGD-AT or TRADES on CIFAR-10, using KL divergence or
squared error (SE) as the loss function. Clipping loss is executed
at every training step, compatible with early-stopping. We average
the results over five runs and report the mean + standard deviation.

Table 3. Classification accuracy (%) on clean images and under
AutoAttack (¢, € = 8/255). The model is WRN-28-10 (SiLU),
following the training pipeline in Rebuffi et al. (2021) and using
IM DDPM generated data. KL divergence is substituted with the
SE function in TRADES, and no clipping loss is executed.

Dataset I} Clean AutoAttack
Method Loss Clip Clean AutoAttack 6 86.64-+0.13 6078+ 0.16
KL div. - 8246 £ 041 48.39 £0.14 5 87.19+£020 61.05£0.11
PGD-AT SE X  8213+0.14 49.4140.27 CIFAR-10 4 87.89+£0.19 61.11 £0.27
SE v  8280+0.16 49.63 + 0.17 3 88.60£0.13 60.89 £ 0.09
2 28 £ 0.1 13 4+0.21

KL div. - 81.47+0.12 49.14 £0.16 89.28+£0.15 60.13+0
TRADES SE X 83.50 £ 0.05 49.44 +0.35 CIFAR-100 4 61.94+0.13 31.21 +£0.12
SE v  8375+0.14 49.57 + 0.28 3 63.12x037 31.01 =£0.09




Table 4. Classification accuracy (%) on clean images and under AutoAttack. The results of our methods are in bold, and no clipping loss
is executed. Here } means no CutMix applied, following Rade and Moosavi-Dezfooli (2021). We use a batch size of 512 and train for 400
epochs due to limited resources, while a larger batch size of 1024 and training for 800 epochs are expected to achieve better performance.

Dataset Method Architecture DDPM Batch Epoch Clean AutoAttack
Rice et al. (2020) WRN-34-20 X 128 200 85.34 53.42
Zhang et al. (2020) WRN-34-10 X 128 120 84.52 53.51
Pang et al. (2021) WRN-34-20 X 128 110 86.43 54.39
Wu et al. (2020) WRN-34-10 X 128 200 85.36 56.17
Gowal et al. (2020) WRN-70-16 X 512 200 85.29 57.14
CIFAR-10 Rebuffi et al. (2021)* WRN-28-10 1M 1024 800 8597  60.73
(b, € = 8/255) ebuffi et al. ( ) -28- . .
+ QOurs (KL — SE, 5 =3) WRN-28-10 1M 512 400 88.61 61.04
+ QOurs (KL — SE, 5 =4) WRN-28-10 1M 512 400 88.10 61.51
Rebuffi et al. (2021)i WRN-70-16 1M 1024 800 86.94 63.58
+ QOurs (KL — SE, 8 =3) WRN-70-16 1M 512 400 89.01 63.35
+ QOurs (KL — SE, 8 =4) WRN-70-16 1M 512 400 88.57 63.74
Gowal et al. (2021) WRN-70-16 100M 1024 2000 88.74 66.10
Wu et al. (2020) WRN-34-10 X 128 200 88.51 73.66
CIFAR-10 Gowal et al. (2020) WRN-70-16 X 512 200 90.90 74.50
(42, € = 128/255) Rebuffi et al. (2021):t WRN-28-10 1M 1024 800 90.24 77.37
+ QOurs (KL — SE, 5 =3) WRN-28-10 1M 512 400 91.52 77.89
+ QOurs (KL — SE, 5 =4) WRN-28-10 1M 512 400 90.83 78.10
Wu et al. (2020) WRN-34-10 X 128 200 60.38 28.86
Gowal et al. (2020) WRN-70-16 X 512 200 60.86 30.03
Rebuffi et al. (2021)i WRN-28-10 1M 1024 800 59.18 30.81
« le‘:Ré}ggE)) +Ours (KL — SE, 3=3) WRN-28-10 1M 512 400 63.66  31.08
o2 + QOurs (KL — SE, 8 =4) WRN-28-10 1M 512 400 62.08 31.40
Rebuffi et al. (2021)i WRN-70-16 1M 1024 800 60.46 33.49
+ QOurs (KL — SE, 8 =3) WRN-70-16 1M 512 400 65.56 33.05
+ QOurs (KL — SE, 8 =4) WRN-70-16 1M 512 400 63.99 33.65




Robustness and Accuracy Could Be Reconcilable by (Proper) Definition

Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, Shuicheng Yan
ICML 2022




Wait! Why does empirical trade-off still exit?

SCORE makes sure that there is no trade-off for the optimal solution,
so the remain challenge leaves to more efficient learning processes.

* Beyond MLE (KL divergence), resorting to more advanced score
matching methods (Fisher divergence) to train SCORE

* Extra data; robust architectures; training tricks



Diffusion Models for Adversarial Robustness
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[Rebuffi et al., NeurIPS 2021; Gowal et al., NeurIPS 2021]

: RoBusTBENCH
D O m I n ate A grdized benchmark for adversarial robustness

for two years!

1@@%




Does Lower FID lead to Better Downstream Performance!?

CIFAR-10 [29] at 32x32 FFHQ [27] 64 x 64 AFHQV2 [7] 64 x64
Conditional Unconditional Unconditional Unconditional
Training configuration VP VE VP VE VP VE VP VE
A Baseline [49] (*pre-trained) | 2.48 3.11 3.01* 3.77* 339 25.95 2.58 18.52
B + Adjust hyperparameters 2.18 248 251 294 3.13 22.53 243 23,12
C + Redistribute capacity 2.08 252 231 283 2.78 41.62 2.54 15.04
D + Our preconditioning 209 2.64 229 3.10 294 3.39 219 3.81
E + Our loss function 1.88 1.86 205 199 2.60 2.81 2.29 2.28
F + Non-leaky augmentation | 1.79 1.79 197 1.98 2.39 2.53 1.96 2.16
NFE 35 35 35 35 79 79 79 79

Our training (config F), VP

Original training (config A), VP Original training (config A), VE Our tralmng (config F), VE

FID 3.01 NFE 35 FID 3.77 NFE 35 FID 197 NFE 35 FID 1.98 NFE 35

[Karras et al., NeurIPS 2022]



Yes! Better Diffusion Models are Indeed Better

CIFAR-10(/s, € = 8/255) CIFAR-10(/s, e = 128/255) CIFAR-100({,,, € = 8/255)

©
=~
©
=3
-3
ot

*
Y  (WRN-70-16) | * | (WRN-70-16)

(WRN-28-10) (WRN_ZS_‘IA(;)(WRN-m-m) *
(WRN-28-10)

o
ot

©

)
-~ =
= W

©
(=]
©
(98]

D
o

o]
[02]
®
o
=
[ ]

67 1

65 1

0
D
]
]

Clean Accuracy (%)
g
®
Clean Accuracy (%)
o
Clean Accuracy (%

631 @ P PY
| [ J
[©2020 ®2021 ©2022 %Ours | [©2020 ®2021 ©2022 HOurs | & o ®

52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 24 26 28 30 32 34 36 38 40 42 44
Robust Accuracy (%) Robust Accuracy (%) Robust Accuracy (%)

g
=
)
3

(#2020 ®2021 ©2022 %Ours]

o]
(V]
o]
t

-~
3]

 New state-of-the-art! @ RO BUST B ENCH

A standardized benchmark for adversarial robustness




Yes! Better Diffusion Models are Indeed Better

Table 1. A brief summary comparison of test accuracy (%) between
our models and existing Rank #1 models, with (v') and without (X)
external datasets, as listed in RobustBench (Croce et al., 2021).

Dataset Method External Clean AA
X 88.74 66.11 : :
CIFAR-10  Rank#1 = 5 g * Even beat previous SOTA that using
(Coos € = 8/255) — xternal d
Ours X 93.25 70.69 external datasets
CIFAR-10  Rank#1 ~ 2241 8042 * No extra training time
/9574 82.32 ,
(£2, € = 128/255) (only extra cost for generating data)
Ours X 95.54 84.86
CIFAR100  Rank#1 % 050 1%
(loo, € = 8/255) ' ‘
Ours X 75.22 42.67




Yes! Better Diffusion Models are Indeed Better

Alleviate overfitting in adversarial training

Generated Best epoch Clean PGD-40 AA
Best Last Diff Best Last Diff Best Last Diff
X 91 84.55 8259 —1.96 55.66 4647 —9.19 5437 4529 —9.08
50K 171 86.15 8547 —0.68 56.96 50.02 —-6.94 55.71 4885 —6.86
100K 274 88.20 8747 —-0.73 59.85 5495 —490 58.85 5342 —-543
200K 365 89.71 8948 —-0.23 61.69 60.32 —1.37 5991 59.11 —-0.80
500K 395 90.76 90.58 —0.18 63.85 63.69 —-0.16 62.76 62.77 +0.01
IM 394 91.13 90.89 —0.24 64.67 6450 —0.17 63.35 63.50 +0.15
SM 395 91.15 9093 —-0.22 64.88 64.88 0 64.05 64.05 0
10M 396 91.25 91.18 —-0.07 65.03 6496 —0.07 64.19 64.28 +0.09
20M 399 91.17 91.07 -0.10 65.21 65.13 —0.08 64.27 64.16 —0.11
50M 395 91.24 91.15 —-0.09 65.35 6523 —-0.12 6453 6451 —-0.02




Yes! Better Diffusion

Models are Indeed Better

Stetp FID] Clean PGD-40 AA
5 35.54 88.92 57.33 57.78
10 2477 90.96 66.21 62.81
15 1.848  91.05 64.56 63.24
Class-cond. 20 1.824 91.12 64.61 63.35
25 1.843  91.07 64.59 63.31
30 1.861 91.10 64.51 63.25
35 1.874 91.01 64.55 63.13
40 1.883 91.03 64.44 63.03
5 37.78  88.00 56.92 57.19
10 2.637 8940 62.88 61.92
15 1.998  89.36 63.47 62.31
Uncond. 20 1963 89.76 63.66  62.45
25 1.977 89.61 63.63 62.40
30 1.992  89.52 63.51 62.33
35 2003 89.39 63.56 62.37
40 2.011 89.44 63.30 62.24

Conditional > Unconditional

Lower FID is better



Yes! Better Diffusion Models are Indeed Better

Table 6. Test accuracy (%) with different augmentation methods
under the ({, € = 8/255) threat model on CIFAR-10, using
WRN-28-10 and 1M EDM generated data.

Methed Clean PGD-40 AA

Common 91.12 64.61 63.35
Cutout 91.25 64.54 63.30
CutMix 91.08 64.34 62.81

AutoAugment | 91.23 64.07 62.86
RandAugment | 91.14 64.39 63.12
IDBH 91.08 64.41 63.24

* Data augmentation seems ineffective



Better Diffusion Models Further Improve Adversarial Training
Zekai Wang*, Tianyu Pang*, Chao Du, Min Lin,Weiwei Liu, Shuicheng Yan
ICML 2023




I Large vision-language models (Large VLMs)

Backgrounds: Emerging Large VLMs are powerful in response generation with visual input

ChatGPT
11. 2022

GPT4
03. 2023

[ Closed-Sourced ]

A Chatbot that
provides a
detailed
response

A more advanced
system that
producing safer
and more useful
responses.

BLIP-2
01. 2023

Conditional text
generation
given an image
and an optional
text prompt.

LLaVA
04. 2023

[ Open-Sourced ]

General-purpose
visual and
language

understanding

Mini-GPT4
04. 2023

General-purpose
visual and
language

understanding




I Example: MiniGPT-4

: MiniGPT-4

W (pretamed)

“Can you tell me what ' .

is the interesting
point of this image?”

7~

V,“The interesting point in
this image is the girl
walking through a field of
sunflowers with an elephant
in the background. The image
is a digital artwork and it
appears to be a beautiful and
peaceful scene with the
sunflowers in the foreground
and the elephant in the

background.”
. J
: “Well. But is this a common scene in the E
. normal life?” !
~

W '/[“No, this is not a common scene in normal ]

life. Walking through a field of sunflowers
with an elephant is not something that most

| It is more of a fantasy or imaginary scene]

created for artistic or creative purposes.

Conversation/VQA with clean image x|,

Everything Looks Great:

1. Good Visual and language understanding
2. Reasonable and detailed response
3. Running on a single GPU

4. Wide application scenarios

Zhu et al., Minigpt-4: Enhancing vision-language understanding with advanced large language models. arXiv 2023



I Large vision-language models (Large VLMs)

Questions:

When Large VLMs are deployed in practice:
Responsible answer generation in companies, Gov., or commercial usage

Consequently, we ask:
What if the generated responses are wrong? It may raise serious concerns

We research the “worst case” of these large VLMs:

Can we let these VLMs generate “targeted response”?




I Matching image-text features (MF-it)

An intuitive method:

argmax fg (iBadv)Tgv,b (Ctar)

”mcle_madv”pge

-

\_

J¢ :image encoder

gy :text encoder

~N

J

Surrogate models

B white-box

Clean image

Perturb noise

. “A bottle of water” | —»

Targeted text

image
encoder

text
encoder

IV

embedding
—> \
max sim.

embedding

Matching the features via an image encoder and a text encoder




I Matching image-image features (MF-ii)

Match target image features via an image encoder and a text-to-image model:

arg max

”wcle_madv”pge

Jo (madV) fo(he(car))

\_

p
fé

: image encoder

: text2img model

~N

J

Surrogate models

white-box
black-box

Transfer-based attacking strategy (MF-ii)

Pretrained generator &,

“A sea otter
with a

pearl earring.”

Targeted Text c¢qy

(e.g. DALL-E)

all

Text2|mg

Pretrained visual encoder f,,
(e.g. ViT-B/32 of CLIP)

1

—}O<—

— embedding

O

I_ embedding

Learnable A

Xtrans = X¥cle T A

of Xtrans



I Matching text-text features (MF-tt)

Matching the features via a text encoder:

argmax g (L (a: S Cin))T Gop (Ctar) Query-based attacking strategy (MF-tt)
|| T cle —Taav || p <€ 9% The victim model p,
) (e.g. MiniGPT-4) Ctar
06, Po(Xady + 00); Cin)
: [}
gy, : text encoder o o> || imezTodl| > [ PoCragy + o065 ||~
Surrogate model o Pe((Xady + 03); Cip)
® Po(¥ady; €in)
A\ 4
[7 :image-2-text modeIJ RGF-
. Estimator |
— { | (Ea.(4)
Target model
=
RGF-Estimated A Updated adv. image x,4
B white-box 1 pseudo-gradient
black-box i Target: “A sea otter with |

a pearl earring.”



I Matching text-text features (MF-tt)

Matching the features via a text encoder (black-box setting):

argmax G (90(Tadv; Cin)) & gy (Car) Query-based attacking strategy (MF-tt)

” Lcle — Ladv ”p <e 00 xad"-ii Ly The victim model p,

® - .ﬁ (e.g. MiniGPT-4) Ctar

' Po((Xadv + 69p); Cin)

Gradient estimation: (Eq. (4)) 5 68\¥adv + 9%); €in
Img2Text [| = | Pe((Xadgv + 601); ¢in) ||

+ 66,); ¢;

Vwadvgzp ( (iBadv; cin))T g¢(ctar) Po(Xady + 065); Cip)

N p G(x adv’ cin)
1 T \4

%N_a [gw (po(Tagy + 00n; Cin)) gy (Crar) ) o |
i - (Eq. (4))
\ gw ( (madv, Cm)) gi,b (Ctar)] (}sn e Xady RGF-Estimated A Updated adv. i

r T

) i Target: “A sea otter with |
RGF-Estimator ; a pearl earring.”




| MF-ii + MF-tt (Ours)

Transfer-based attacking strategy (MF-ii)

Query-based attacking strategy (MF-tt)

Pretrained generator £, Pretrained visual encoder f,, o0 xad 650 The victim model py v
(e.g. DALL-E) (e.g. ViT-B/32 of CLIP) ® — W (e.9. MiniGPT-4) Ctar
) —  — embedding )
m of he(¢tar) 00, m Po((Xady + 0p); Cip)
— A \/S\I'Ie.?hogter TethIma f 6 -> 8<— @ -> |mg2TeX§ -> pe((xadv + 65]); Cin) ]
pearl earring.” g ¢ O
Targeted Text ctqp U U 00 L) U Po((Xady + 00); Cipy)
Matchin © Pe¥adv: Cin)
Femmeememe——aaa . lgradien o 9 J
' " T P
'@ : pixel addition! b -
: E f .* [f 8 O Estimator {—
1A ~ NQO,1) @ittt 6]~ r (Eq. (4))
' 8 :noupdate embedding
' ' Learnable A of Xtrans

Clean image x|

8
Img2Text

-

| Xtrans = Xcle + A

“A colorful painting of a cat
wearing a colorful pitcher
with green eyes.”

/ Generated response of x|,

Adv. image xad\} (Ours)

8
Img2Text

Y

-

X Targeted response of x4,



I Evading BLIP-

2

BLIP-2: image captioning Clean image

“An armchair in the
shape of an
avocado.”

8
Text2Img (DALL-E)

could also be a real image
with a text description

Additional results

Resulting adv. image f-[Target: “A hand drawn sketch of a]

Porsche 911.”

/ BLIP-2 generated response | — T T,
8 - -
- |Img2Text| = A stuffed chair in tne x 4
shape of an avocado. % b .
R A - |Img2Text| =+ 2 pencil drawing of a
bbb ' sports car is shown.
it adversarial noise BLIP-2 generated response
foefefetbefee (Dy our method) of our adv. image
PRt W
L.t 0 ;...

____________________________________________________________________

Clean image / BLIP-2 generated response

Resulting adv. image

“a dog and cat with
their tongues out and
their heads together”

“thelsunsetlover the

[mountains and peaks/”

adversarial attack

/ BLIP-2 generated response

— | “a white cat riding a
red motorbike.”

'“the interior of a houset{_
'that has [an ocean view|”!

I adversarial attack 1\

Li et al., Blip-2: Bootstrapping languageimage pre-training with frozen image encoders and large language models. arXiv 2023.



I Evading UniDiffuser

; enerated response enerated response
generated response of clean image givgen text from p‘:ior step generated response given givgen text from p?ior step
. e / . L / e \ » clean image from prior step
original text description 8 A painting of W S , /
Img2Text | Packers quarterback [ . o

“A Van Gogh style | (UniDiffuser) football player on a A painting of a

painting of an American blue background.” - - Green Bay Packers
footbhall player.” football player.

‘X  “A man in an
- astronaut suit

“A painting of an

TS, 25T,

1
1
_a St - astronaut on a
Nl Sl riding a horse withj horse on the moon.”
L — . LM space on the moon."”)
generated image (xc) given adversarial noise \SRace of The Toon. NPy N
original text description : (by our method) generated response ! _generated response
.................................................... of our adv. image generated response given given text from prior step

text prediction of adv. image

Bao et al., One Transformer Fits All Distributions in Multi-Modal Diffusion. arXiv 2023.



Evading MiniGPT-4

MiniGPT-4: Visual Question-Answering

adversarial attack J
E “Can you tell me what ' .
' is the interesting
' point of this image?”

E “Can you tell me what : .
' is the interesting

point of this image?”

& |* e s wearing
overalls, holding a shovel,
and working The
image has_a futuristic, with
a sleek, standing
among bright, colorful
flowers. The overall
composition is eye-catching,
with the contrast between the
robot and the fields creating
a striking visual effect. ”

= | W ‘/“The interesting point in :
this image is the girl :
walking through a field of :
sunflowers with an elephant :
in the background. The image
is a digital artwork and it
appears to be a beautiful and
peaceful scene with the
sunflowers in the foreground | :
and the elephant in the
background.”

: “Well. But is this a common scene in the E § : “Well. But is this a common scene in the E
: normal life?” ! : : normal life?” !
- é N E ( 3
@ '/ “No, this is not a common scene in normal @ X “Not exactly. This scene is a work of
life. Walking through a field of sunflowers : futuristic depiction that may not exist in
P with an elephant is not something that most : reality, wherehave become a part of the
g - Human i people would encounter in their daily lives. : agricultural process. However, it is important
’ 3 It is more of a fantasy or imaginary scene, : to note that such a scenario is not currently a
P s - MiniGPT-4 ; created for artistic or creative purposes.” : reality and may never become one.”
@ (pretained) . . . : * - . . /
R Conversation/VQA with clean image xo : Conversation/VQA with adv. image x4

Zhu et al., Minigpt-4: Enhancing vision-language understanding with advanced large language models. arXiv 2023.



Evading LLaVA

LLaVA: Visual Question-Answering

adversarial attack

r '
! “What is the content
! of this image?” :

-
- J/ “The image features a sea

W turtle swimming in a blue

lagoon or ocean, with its head
breaking the surface of the

water. The turtle appears to be

moving towards the camera. The
background includes a beach,

adding a picturesque element to

the scene.”

“What is the feeling it
brings to people?”

Clean image input (From ImageNet)

4 N

VcThe image brings a sense of tranquility, relaxation, and
connection with nature. Observing the sea turtle gliding
through the crystal clear water can evoke feelings of peace
and serenity, as it showcases the beauty and harmony of the
underwater world. This picturesque scene may also inspire a
sense of wonder and appreciation for the natural
environment, prompting viewers to consider the importance of
conservation and protecting marine life.”

. .

Conversation/VQA with clean image x|

f Target: “A bunch of tropical fruits in the middle ]
l ' of the photo.” J

Resulting adv. image (ours)

“What is the content E
of this image?” !

XThe image features a bunch
of (hanging bananas| Some of
them are green and yellow,
while one of theis

suspended in mid-air,
possibly being lowered into
a blue 11'qu1'd.
are arranged in a way a
resembles a face, with some
of them positioned like a

mouth or other facial

features.”

i “What is the feeling it
. brings to people?” '

“The sight of[a bunch of bananas]hanging from a rope or a
ceiling can bring a sense of curiosity, amusement, or even
nostalgia to people. The unusual positioning of the bananas

might make it an interesting conversation piece or a fun

di observe. Furthermore, as the appear to be

tropicall it may evoke feelings of relaxation or remind

people of vacationing in warm destinations where such
are commonly found.”

Conversation/VQA with adv. image x, 4,

Liu et al., Visual instruction tuning. arXiv 2023.



I Quantitative evaluation
(CLIP score between text and image features)

Performance: Matching image-text features (MF-it)

White-box attacks against surrogate models

Model Clean image Adversarial image | Time to obtain a single @,qy
Tae he(car) MF-ii MF-it MF-ii MF-it
CLIP (RN50) [62] 0.094 0.261 0.239 0.576 0.543 0.532
CLIP (ViT-B/32) [62] | 0.142 0.313 0.302 0.570 0.592 0.588
BLIP (ViT) [39] 0.138 0.286 0.277 0.679 0.641 0.634
BLIP-2 (ViT) [40] 0.037 0.302 0.294 0.502 0.855 0.852
ALBEF (ViT) [3£8] 0.063 0.098 0.091 0.451 0.750 0.749

Good performance in white-box setting



I Quantitative evaluation
(CLIP text score 1)

Black-box attacks against victim models.

MF-it is not that transferrable in black-
box setting;

VLM model Attacking method Text ean)der (prelrz'uned) for e'valuauon Other info.
RNS50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble |# Param. Res.
Clean image 0472 0456 0479 0.499 0.344 0.450
MF-it 0.492 0474 0.520 0.546 0.384 0.483
41
BLIP[41] MF-ii 0.766 0.753 0.774 0.786 0.696 0.755 224M - 384
MF-ii + MF-tt 0.855 0.841 0.861 0.868 0.803 0.846
Clean image | 0417 0415 0.429 0.446 0.305 0.402
_ _. | MF-it 0.655 0.639 0.678 0.698 0.611 0.656
UniDiffuser [3] =\ i 0709 0695 0721 0733 0637 0700 | B 2%
MF-ii + MF-tt 0.754 0.736 0.761 0.777 0.689 0.743
Clean image 0.487 0.464 0.493 0.515 0.350 0.461
Img2Prompt [30] MF_T? 0.499 0472 0.501 0.525 0.355 0.470 178 384
MF-ii 0.502 0479 0.505 0.529 0.366 0.476
MF-ii + MF-tt 0.803 0.783 0.809 0.828 0.733 0.791
Clean image | 0.473 0454 0.483 0.503 0.349 0.452
BLIP-2 [47] MF-TF 0.492 0474 0.520 0.546 0.384 0.483 378 204
MF-ii 0.562 0.541 0.571 0.592 0.449 0.543
MF-ii + MF-tt 0.656 0.633 0.665 0.681 0.555 0.638
Clean image |0.383 0.436  0.402 0.437 0.281 0.388
LLaVA [44] MF’?? 0.3890 0.441 0.417 0.452 0.288 0.397 1338 224
MF-ii 0.396 0.440 0.421 0.450 0.292 0.400
MF-ii + MF-tt 0.548 0.559 0.563 0.590 0.448 0.542
Clean image 0422 0431 0.436 0.470 0.326 0417
MiniGPT-4 [109] MF_T? 0.472 0.450 0.461 0.484 0.349 0.443 141B 224
MF-ii 0.525 0.541 0.542 0.572 0.430 0.522
MF-ii + MF-tt 0.633 0.611 0.631 0.668 0.528 0.614




I Quantitative evaluation
(CLIP text score 1)

Black-box attacks against victim models.

MF-ii is better, but the performance is
limited by the targeted images;

VLM model Attacking method Text enc?der (pretrz.uned) for evaluation Other info.
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble |# Param. Res.
Clean image 0472 0456 0479 0499 0344 0450
MF-it 0492 0474 0520  0.546 0384  0.483
4
BLIP[41] MF-ii 0766 0753 0774 0786 0696 0755 || 22*M 384
MF-ii + ME-tt | 0.855 0.841 0.861 0.868 0803  0.846
Clean image 0417 0415 0429 0446 0305 0402
.  MF-it 0.655 0.639 0678  0.698 0611  0.656
UniDiffuser [5] (= 0709 0695 0721 0733 0637 o700 | B 2
MF-ii + ME-t | 0.754 0736 0761  0.777  0.689  0.743
Clean image 0487 0.464 0493 0515 0350  0.461
mg2Prompt (0] ME 0499 0472 0501 0525 0355 0470 | | . o,
MF-ii 0502 0479 0505 0529 0366 0476
MF-ii + ME-tt | 0.803 0783  0.809  0.828 0733 0.791
Clean image 0473 0454 0483 0503 0349 0452
L2 MEL 0492 04740520 0546 0384 0483 | . .
MF-ii 0562 0.541 0571 0592 0449  0.543
MF-ii + ME-tt | 0.656 0.633 0.665  0.681  0.555  0.638
Clean image 0383 0436 0402 0437 0281  0.388
Llavap  MEt 0389 0441 0417 0452 0288 0397 | ... .
MF-ii 0396 0440 0421 0450 0292 0.400
MF-ii + ME-tt | 0.548 0.559  0.563  0.590 0448  0.542
Clean image 0422 0431 0436 0470 0326 0417
MiniGPT4 [100) ME-i 0472 0450 0461 0484 0349 0443 | | 10 o,
ME-ii 0525 0.541 0542 0572 0430 0522
MF-ii+ ME-tt | 0.633 0.611 0.631  0.668 0528  0.614




I Quantitative evaluation
(CLIP text score 1)

Black-box attacks against victim models.

MF-ii + MF-tt achieves better
performance

VLM model Attacking method Text enc?der (pretrz.uned) for evaluation Other info.
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble | # Param. Res.
Clean image 0.472 0.456 0.479 0.499 0.344 0.450
MEF-it 0492 0474 0.520 0.546 0.384 0.483
41
BLIP[41] MF-1i 0.766 0.753 0.774 0.786 0.696 0.755 224 584
MF-1i + MF-tt 0.855 0.841 0.861 0.868 0.803 0.846
Clean image 0417 0415 0.429 0.446 0.305 0.402
. . ME-it 0.655 0.639 0678 0698 0611 0656
UniDiffuser [51 /e 0709 0695 0721 0733 0637 o700 | B 2%
MF-ii + MF-tt 0.754 0.736 0.761 0.777 0.689 0.743
Clean image 0.487 0.464 0.493 0.515 0.350 0.461
Img2Prompt [30] MF—? 0.499 0472 0.501 0.525 0.355 0.470 17B 384
MF-ii 0.502 0.479 0.505 0.529 0.366 0.476
MF-1i + MF-tt 0.803 0.783 0.809 0.828 0.733 0.791
Clean image 0473 0.454 0.483 0.503 0.349 0.452
BLIP-2 [42] MF-?? 0.492 0474 0.520 0.546 0.384 0.483 378 224
MEF-ii 0.562 0.541 0.571 0.592 0.449 0.543
MF-ii + MF-tt 0.656 0.633 0.665 0.681 0.555 0.638
Clean image 0.383 0.436 0.402 0.437 0.281 0.388
LLaVA [46] MF—? 0.389 0.441 0.417 0.452 0.288 0.397 133B 224
MF-1i 0.396 0440 0421 0.450 0.292 0.400
MF-1i + MF-tt 0.548 0.559 0.563 0.590 0.448 0.542
Clean image 0.422 0431 0.436 0.470 0.326 0417
MiniGPT-4 [109] MF—{? 0472 0450 0461 0.484 0.349 0.443 141B 224
MF-ii 0.525 0.541 0.542 0.572 0.430 0.522
MF-1i + MF-tt 0.633 0.611 0.631 0.668 0.528 0.614




I Visual interpretation via GradCAM Analysis

: i(b) ()
i i GradCAM of x e GradCAM of xadV t i GradCAM of x4y,

GradCAM of hg(ctar)

+ “A photo of a teddy “A small bird sitting “A beautiful bird : E “What is the teddy “What is the teddy : : “A beautiful bird “A beautiful bird
bear on a skateboard on the branch of a with a black and bear playing in the bear playing in the | ; with a black and with a black and
in Times Square.” tree in the snow.” white color in snow.” ! ' middle of the road?” middle of the road?” : wh1te color 1in snow. white color in snow. :

(a): Craft an adv image given a target string and a target image
(b): GradCAM shows good correspondence to the query text over , but

(c): For advimage, we obtain similar GradCAM results as the target image.



I Trade-off between image quality and perturbation budget

Trade-off

Targeted image h:(ctyr) € =38, LPIPS 0.054

e =2,LPIPS =0.013

e =4, LPIPS = 0.019 € =16, LPIPS = 0.116

“A cute tropical fish « . ' « | - “A cartoon blue Illustration of
in an aquarium on a roboAt pa11ant11nng cohfesas ” 1Ausuosntorraot1sohnar”k f1sh in a bright a blue fish in a
dark blue background.” praying ) ’ fish tank.” fish tank

- LPIPS indicates perceptual similarity to the clean image.
- Lower means better quality

v

e = 64, LPIPS = 0.158

“An image of a
blue fish in an
aquarium.”



Sensitivity to common corruption

Increase the power of noise perturbation

Example-1

Xadv * Onoise = 0

Sensitivity of adversarial
examples to Gaussian noises.

“A red and black bird '
sitting on top of a |
tree branch.” '

Example-2

Xadv : Onoise = 0

Learnt noise perturbation
gradually becomes invalid.

i “A close up view of a
' hamburger with lettuce
[ and cheese.”

3\'

)

’ e ™ o o
§§§?: ig?:g&ﬁﬂafgg b

D 4

“A yellow and red bird |
sitting on top of a
tree.” !

“A yellow and red
parrot sitting on top

( “A red and black bird ! E “A large painting of
of a palm tree.” J |

is sitting on top of a three sunflowers in a |
sunflower.” !

Xadv : Onoise = 0-01 Xadv * Onoise = 0-025

“A close up shot of a ;

h & BEmotieEn Bt i Ehamburger with lettucei
| Il 1

1" lettuce and cheese.” e
e oo C I T oot in it.

and a car on a piece of! ” X
» sports car.
paper .

[A drawing of 2 burw] A pencil drawing of 3.




I Failure cases

Xcle

“The image features a small, adorable black and gray
dog sitting on a brick walkway or sidewalk. The dog
appears to be in a relaxed position, panting and
looking up at the camera.”

<

@

“The image features a collage of photos of various
dogs. Some of the dogs are close up, while others are
in the background. There is a prominent black dog in

the scene with its tongue sticking out.”

Xcle

% ‘/“The image is an artistic illustration of a goldfish
swimming in a dark, rippling pool with a dark
background. The fish is the main focal point of the
image, and it appears to be captured in an artistic,
almost cartoonish style.”

“The image features a small white and black fish,
possibly a sea or tropical fish, swimming in a large
tank. The fish is the main focus of the image,
occupying a significant portion of the frame.”

Two failure cases, where the correct
response is generated over adv images.



On Evaluating Adversarial Robustness of Large Vision-Language Models
Yunging Zhao*, Tianyu Pang*, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, Min Lin
NeurlIPS 2023
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