On Improving and Evaluating Adversarial Robustness

Tianyu Pang Sea Al Lab, Singapore

Adversarial vulnerability

Puffer: 97.99%

Crab: 100.00%

[Dong et al. CVPR 2018]

Adversarial examples in physical world

Not only in computer vision

Movie Review (Positive (POS) ↔ Negative (NEG))							
Original (Label: NEG)							
Attack (Label: POS)	The characters, cast in impossibly engineered circumstances, are fully estranged from reality.						
Original (Label: POS)	It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical						
	wave that life wherever it takes you.						
Attack (Label: NEG)	It cuts to the core of what it actually means to face your fears , and to ride the big metaphorical wave that						
	life wherever it takes you.						
SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))							
Premise	Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.						
Original (Label: CON)	The boys are in band uniforms.						
Adversary (Label: ENT)	The boys are in band garment.						
Premise	A child with wet hair is holding a butterfly decorated beach ball.						
Original (Label: NEU)	The child is at the beach.						
Adversary (Label: ENT)	The youngster is at the shore.						

NLP (Jin et al. AAAI 2020)

Reinforcement Learning (Lin et al. IJCAI 2017)

Graph (Dai et al. ICML 2018)

Audio (Carlini and Wagner. S&P 2018)

Not only in computer vision

LiDAR (Tu et al. CVPR 2020)

	Representative Example OD: Given a string a, what is the length of a.				
VC	OO: (strlen a)				
	AD: Given a string b, what is the length of b.				
	AO: (strlen a)				
	OD: Given a number a, compute the product of all the numbers from 1 to a.				
	OO: (invoke1 (lambda1 (if (\leq arg1 1)1(*(self(-arg1 1))				
RR	arg1))) a)				
	AD: Given a number a, compute the product of the numbers from 1 to a.				
	AO: (* a 1)				
	OD: consider an array of numbers, what is reverse of elements in the given array that are				
	odd				
SR	OO : (reverse (filter a (lambda1 (== (% arg1 2)1))))				
	AD: consider an array of numbers, what equals reverse of elements in the given array that				
	are odd				
	AO: (reduce (filter a (lambda1 (== (% arg1 2)1))))				

Code Generation (Anand et al. 2021)

3D Point Cloud (Lang et al. 2020)

Recommender System (Cao et al. SIGIR 2020)

Trade-off between robustness and accuracy

Empirically:

Standard training

clean accuracy 95% robust accuracy 0%

Adversarial training

clean accuracy 85% robust accuracy 50%

Theoretically:

Exists in some simple cases

Where the trade-off stems from?

[Zhang et al. ICML 2019; Tsipras et al. ICLR 2019]

What is an **accurate** model?

An accurate model refers to the one with low standard error:

$$\mathbf{R}_{\text{Standard}} = \mathbb{E}_{p_d(x)} \begin{bmatrix} \text{KL} \left(p_d(y|x) \| p_\theta(y|x) \right) \end{bmatrix}$$

$$\textbf{data distribution} \qquad \textbf{model distribution}$$

Optimal solution: $p_{\theta^*}(y|x) = p_d(y|x)$

What is a **robust** model?

A robust model refers to the one with low robust error:

$$\mathbf{R}_{\text{Madry}} = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \text{KL} \left(p_d(y|x) \| p_\theta(y|\boldsymbol{x'}) \right) \right]$$

Optimal solution: $p_{\theta^*}(y|x) \neq p_d(y|x)$

[Madry et al. ICLR 2018]

Trade-off naturally comes!

An optimally accurate model is NOT an optimally robust model

$p_d(y|x)$ is not an optimally **robust** model w.r.t. itself???!!!

Did we properly define robustness?

$$\mathbf{R}_{\mathrm{Madry}} = \mathbb{E}_{p_d(x)} \left[\max_{\substack{x' \in B(x) \\ x' \in B(x) \\ x' \in B(x) \\ y_{\theta}(x) = \mathrm{argmax}_y \ p_{\theta}(y|x) \\ y_{\theta}(x) = \mathrm{argmax}_y \ p_{\theta}(y|x) \\ \mathbf{y}_{\theta}(x) = \mathrm{argmax}_y \ p_{\theta}(y|x) \\ \mathrm{hard \ label \ of \ model \ distribution}_{(i.e., \ predicted \ label)} \left[\mathbf{x}'(y|x) \\ \mathbf{y}_{\theta}(x) = \mathrm{argmax}_y \ p_{\theta}(y|x) \\ \mathrm{hard \ label \ of \ data \ distribution}_{(i.e., \ true \ label)} \right]$$

Did we properly define robustness?

0-1 robust error:
$$\mathbb{E}_{p_d(x)} \left[\max_{\substack{x' \in B(x)}} \mathbf{1} \left(\mathcal{Y}_{\theta}(x') \neq \mathcal{Y}_d(x) \right) \right]$$

true label is invariant in B(x)

$$\mathbf{r}(x)$$

Self-consistent 0-1 robust error:
$$\mathbb{E}_{p_d(x)} \left[\max_{\substack{x' \in B(x)}} \mathbf{1} \left(\mathcal{Y}_{\theta}(x') \neq \mathcal{Y}_d(x') \right) \right]$$

• no assumption on $p_d(y|x)$

• allows for flexible B(x)

Did we properly define robustness?

$$\mathbf{R}_{\text{Madry}} = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \text{KL} \left(p_d(y|\boldsymbol{x}) \| p_\theta(y|\boldsymbol{x'}) \right) \right]$$

 $\oint \frac{\text{differentiable surrogate}}{(p_d(y|x) \text{ is invariant in } B(x))}$

Unreasonable (overcorrection towards smoothness)

$$\mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \mathbf{1} \left(\mathcal{Y}_{\theta}(\boldsymbol{x'}) \neq \mathcal{Y}_d(x) \right) \right]$$

true label is invariant in B(x) Reasonable

$$\mathbb{E}_{p_d(x)} \left[\max_{\substack{x' \in B(x)}} \mathbf{1} \left(\mathcal{Y}_{\theta}(x') \neq \mathcal{Y}_d(x') \right) \right]$$

Self-COnsistent Robust Error (SCORE)

$$\mathbf{R}_{\mathrm{SCORE}}(\theta) = \mathbb{E}_{p_d(x)} \left[\max_{\substack{x' \in B(x)}} \mathrm{KL} \left(p_d(y|x') \| p_\theta(y|x') \right) \right]$$
$$\triangleq \quad \text{differentiable surrogate}$$
$$\mathbb{E}_{p_d(x)} \left[\max_{\substack{x' \in B(x)}} \mathbf{1} \left(\mathcal{Y}_{\theta}(x') \neq \mathcal{Y}_d(x') \right) \right]$$

$\mathbf{R}_{Madry}(\theta)$ invariance $\Rightarrow \mathbf{R}_{SCORE}(\theta)$ equivariance

Self-COnsistent Robust Error (SCORE)

$$\mathbf{R}_{\mathrm{SCORE}}(\theta) = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \mathrm{KL} \left(p_d(\boldsymbol{y}|\boldsymbol{x'}) \big\| p_\theta(\boldsymbol{y}|\boldsymbol{x'}) \right) \right]$$

- Optimal solution: $p_{\theta^*}(y|x) = p_d(y|x)$ (self-consistency, i.e., $p_d(y|x)$ is the optimally robust model w.r.t. itself under supervised learning framework)
- Keep the paradigm of robust optimization

Toy demo (self-consistency)

60,000 training pairs, mimics the expectation form

Toy demo (robust optimization)

6 training pairs, mimics the finite-sample form

Standard error has the same optimal solution as SCORE, but does not enjoy robust optimization in finite-sample cases

In practice, how to optimize SCORE?

Directly applying first-order optimizers requires:

$$\begin{aligned} \nabla_x \mathrm{KL} \left(p_d(y|x) \big\| p_\theta(y|x) \right) \\ = & \mathbb{E}_{p_d(y|x)} \left[- \frac{\nabla_x \log p_\theta(y|x)}{\log p_\theta(y|x)} + \left(\log \frac{p_d(y|x)}{p_\theta(y|x)} \right) \cdot \frac{\nabla_x \log p_d(y|x)}{\log p_d(y|x)} \right] \\ & \overline{\mathsf{nodel gradient}} \end{aligned}$$

- Initial experiments using score matching are of high variance
- More advanced score matching like [Chao et al. ICLR 2022] could be explored

Goodbye KL divergence!

Substitute KL divergence with any distance metric \mathcal{D} does not satisfy

• Symmetry:
$$\mathcal{D}(A \| B) = \mathcal{D}(B \| A)$$

• Triangle inequality: $\mathcal{D}(A \| C) \leq \mathcal{D}(A \| B) + \mathcal{D}(B \| C)$

Typical distance metrics include $\|A - B\|_p$

Goodbye KL divergence!

Substitute KL divergence with any distance metric \mathcal{D}

$$\mathbf{R}_{\mathrm{Madry}}^{\mathcal{D}}(\theta) = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \mathcal{D}\left(p_d(y|x) \| p_\theta(y|\boldsymbol{x'}) \right) \right];$$

$$\mathbf{R}_{\mathrm{SCORE}}^{\mathcal{D}}(\theta) = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \mathcal{D}\left(p_d(\boldsymbol{y}|\boldsymbol{x'}) \| p_\theta(\boldsymbol{y}|\boldsymbol{x'}) \right) \right]$$

Upper and lower bounds for SCORE

Theorem I:

$$|\mathbf{R}_{Madry}^{\mathcal{D}}(\theta) - C^{\mathcal{D}}| \leq \mathbf{R}_{SCORE}^{\mathcal{D}}(\theta) \leq \mathbf{R}_{Madry}^{\mathcal{D}}(\theta) + C^{\mathcal{D}},$$

where
$$C^{\mathcal{D}} = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \mathcal{D} \left(p_d(y|\boldsymbol{x}) \| p_d(y|\boldsymbol{x'}) \right) \right]$$

intrinsic property of data distribution, indicates the (Madry) robust error of $p_d(y|x)$ itself

Theorem I:

Upper and lower bounds for SCORE

$$|\mathbf{R}_{\mathrm{Madry}}^{\mathcal{D}}(\theta) - C^{\mathcal{D}}| \leq \mathbf{R}_{\mathrm{SCORE}}^{\mathcal{D}}(\theta) \leq \mathbf{R}_{\mathrm{Madry}}^{\mathcal{D}}(\theta) + C^{\mathcal{D}},$$

where
$$C^{\mathcal{D}} = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \mathcal{D} \left(p_d(y|\boldsymbol{x}) \| p_d(y|\boldsymbol{x'}) \right) \right]$$

- Upper bound: minimizing SCORE without estimating $abla_x \log p_d(y|x)$
- Lower bound: indicates the overfitting phenomenon

Theorem I:

Upper and lower bounds for SCORE

$$|\mathbf{R}_{\mathrm{Madry}}^{\mathcal{D}}(\theta) - C^{\mathcal{D}}| \leq \mathbf{R}_{\mathrm{SCORE}}^{\mathcal{D}}(\theta) \leq \mathbf{R}_{\mathrm{Madry}}^{\mathcal{D}}(\theta) + C^{\mathcal{D}},$$

where
$$C^{\mathcal{D}} = \mathbb{E}_{p_d(x)} \left[\max_{\boldsymbol{x'} \in B(x)} \mathcal{D} \left(p_d(y|x) \| p_d(y|\boldsymbol{x'}) \right) \right]$$

- Upper bound: minimizing SCORE without estimating $abla_x \log p_d(y|x)$
- Lower bound: indicates the overfitting phenomenon

Upper and lower bounds for SCORE \mathcal{D} is ℓ_2 -distance : $||A - B||_2$

Extending to composite function of distance

Theorem 2:

$$|\mathbf{R}_{\mathrm{SCORE}}^{\mathcal{D}}(\theta) - C^{\mathcal{D}}| \le \phi^{-1} \left(\mathbf{R}_{\mathrm{Madry}}^{\phi \circ \mathcal{D}}(\theta) \right)$$

 $\phi(\cdot)$ is a **monotonically increasing convex** function, e.g., square function

Examples of $\phi \circ \mathcal{D}$ include squared error (SE) and JS-divergence

Composite function of distance empirically works better

Loss	Alias	l.r. = 0.1		l.r. = 0.05		l.r. = 0.01	
L055		Clean	PGD	Clean	PGD	Clean	PGD
$\ P-Q\ _2$	ℓ_2 -dis.	75.91	52.16	77.98	52.74	78.45	51.13
$\ P-Q\ _1$	ℓ_1 -dis.	58.51	43.87	64.88	46.77	70.02	47.76
$\ P-Q\ _{\infty}$	ℓ_{∞} -dis.	58.34	43.71	59.75	45.02	65.65	46.36
$\sqrt{\mathrm{JS}(P\ Q)}$	JS-dis.	53.06	40.08	55.27	41.86	68.50	46.49
$\mathrm{JS}(P\ Q)$	JS-div.	79.41	51.75	81.27	51.85	80.12	49.10
$\operatorname{KL}(P \ Q)$	KL-div.	82.74	53.02	83.21	51.52	82.65	47.45
$\ P-Q\ _1^2$	-	79.87	50.96	81.49	52.00	81.26	47.51
$\ P-Q\ _2^2$	SE	80.59	54.63	83.38	54.01	81.43	51.13

PGD-AT and TRADES are equivalent (under \mathcal{D})

Theorem 3: For $\beta \geq 1$

$\mathbf{R}_{\mathrm{Madry}}^{\mathcal{D}}(\theta) \leq \mathbf{R}_{\mathrm{TRADES}}^{\mathcal{D}}(\theta;\beta) \leq (1+2\beta) \cdot \mathbf{R}_{\mathrm{Madry}}^{\mathcal{D}}(\theta)$

- Similar as the equivalence among ℓ_p -norms
- Induce the same topology of loss landscapes in parameter space [Conrad 2018]

Back to KL divergence with new insights

A bridge between **KL divergence** and **distance metrics**: **Pinsker's inequality**

$$\frac{1}{2} \|P - Q\|_1^2 \le \mathrm{KL}(P\||Q)$$

[Csiszar and Korner 2011]

Back to KL divergence with new insights

Corollary I:

$$|\mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) - C^{\ell_1}| \leq \sqrt{2 \cdot \mathbf{R}_{\mathrm{Madry}}(\theta)}$$

original KL-based robust error

$$\mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) - C^{\ell_1}| \leq \sqrt{2 \cdot \mathbf{R}_{\mathrm{Madry}}(\theta)} \overset{\text{minimized in previous work}}{\checkmark}$$

$$|\mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) - C^{\ell_1}| \leq \sqrt{2 \cdot \mathbf{R}_{\mathrm{Madry}}(\theta)}$$

$$\mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) = 0$$

$$|\mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) - C^{\ell_1}| \le \sqrt{2 \cdot \mathbf{R}_{\mathrm{Madry}}(\theta)}$$

$$\mathbf{I} \mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) = 0$$

$$C^{\ell_1} \leq \sqrt{2 \cdot \mathbf{R}_{\mathrm{Madry}}(\theta)} \Longrightarrow \mathbf{R}_{\mathrm{Madry}}(\theta) \geq \frac{\left(C^{\ell_1}\right)^2}{2}$$

$$\mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) = 0 \Rightarrow p_{\theta}(y|x) = p_d(y|x)$$

$$\mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) = 0 \Rightarrow p_{\theta}(y|x) = p_d(y|x)$$
$$\mathbf{\Psi}$$
$$\mathbf{R}_{\mathrm{Madry}}(\theta) = C^{\mathrm{KL}} \ge \frac{(C^{\ell_1})^2}{2}$$

where
$$C^{\mathrm{KL}} = \mathbb{E}_{p_d(x)} \left[\max_{\substack{\mathbf{x'} \in B(x)}} \mathrm{KL} \left(p_d(y|x) \| p_d(y|\mathbf{x'}) \right) \right]$$

Explaining semantic gradients (for adversarial training)

Theorem 4: (under mild condition)

$$\begin{aligned} \mathbf{R}_{\mathrm{SCORE}}^{\ell_1}(\theta) &= \mathbf{R}_{\mathrm{Standard}}^{\ell_1}(\theta) + \\ 2\epsilon \cdot \mathbb{E}_{p_d(x)} \left[\left\| \nabla_x p_d(\mathcal{Y}_d(x) | x) - \nabla_x p_\theta(\mathcal{Y}_d(x) | x) \right\|_q \right] + o(\epsilon) \end{aligned}$$
alignment between model gradient and data gradient

where $\mathcal{Y}_d(x) = \operatorname{argmax}_y p_d(y|x)$

Explaining semantic gradients (for adversarial training)

Empirical performance

Table 2. Classification accuracy (%) on clean images and under AutoAttack (ℓ_{∞} , $\epsilon = 8/255$). Here we use ResNet-18 trained by PGD-AT or TRADES on CIFAR-10, using KL divergence or squared error (SE) as the loss function. Clipping loss is executed at every training step, compatible with early-stopping. We average the results over five runs and report the mean \pm standard deviation.

Method	Loss	Clip	Clean	AutoAttack
PGD-AT	KL div. SE SE	- × ✓	$\begin{array}{c} 82.46 \pm 0.41 \\ 82.13 \pm 0.14 \\ \textbf{82.80} \pm \textbf{0.16} \end{array}$	$\begin{array}{c} 48.39 \pm 0.14 \\ 49.41 \pm 0.27 \\ \textbf{49.63} \pm \textbf{0.17} \end{array}$
TRADES	KL div. SE SE	- × ✓	81.47 ± 0.12 83.50 ± 0.05 83.75 ± 0.14	$\begin{array}{c} 49.14 \pm 0.16 \\ 49.44 \pm 0.35 \\ \textbf{49.57} \pm \textbf{0.28} \end{array}$

Table 3. Classification accuracy (%) on clean images and under AutoAttack (ℓ_{∞} , $\epsilon = 8/255$). The model is WRN-28-10 (SiLU), following the training pipeline in Rebuffi et al. (2021) and using 1M DDPM generated data. KL divergence is substituted with the SE function in TRADES, and no clipping loss is executed.

Dataset	eta	Clean	AutoAttack
	6	86.64 ± 0.13	60.78 ± 0.16
	5	87.19 ± 0.20	61.05 ± 0.11
CIFAR-10	4	87.89 ± 0.19	61.11 ± 0.27
	3	88.60 ± 0.13	60.89 ± 0.09
	2	89.28 ± 0.15	60.13 ± 0.21
CIFAR-100	4	61.94 ± 0.13	31.21 ± 0.12
CIFAR-100	3	63.12 ± 0.37	31.01 ± 0.09

Table 4. Classification accuracy (%) on clean images and under AutoAttack. The results of our methods are in **bold**, and no clipping loss is executed. Here [‡] means *no CutMix applied*, following Rade and Moosavi-Dezfooli (2021). We use a batch size of 512 and train for 400 epochs due to limited resources, while a larger batch size of 1024 and training for 800 epochs are expected to achieve better performance.

Dataset	Method	Architecture	DDPM	Batch	Epoch	Clean	AutoAttack
	Rice et al. (2020)	WRN-34-20	×	128	200	85.34	53.42
	Zhang et al. (2020)	WRN-34-10	×	128	120	84.52	53.51
	Pang et al. (2021)	WRN-34-20	×	128	110	86.43	54.39
	Wu et al. (2020)	WRN-34-10	×	128	200	85.36	56.17
	Gowal et al. (2020)	WRN-70-16	×	512	200	85.29	57.14
$\mathbf{CIFAR-10}$	Rebuffi et al. (2021) [‡]	WRN-28-10	1 M	1024	800	85.97	60.73
$(\ell_{\infty}, \epsilon = 8/255)$	+ Ours (KL \rightarrow SE, $\beta = 3$)	WRN-28-10	1 M	512	400	88.61	61.04
	+ Ours (KL \rightarrow SE, $\beta = 4$)	WRN-28-10	1 M	512	400	88.10	61.51
	Rebuffi et al. (2021) [‡]	WRN-70-16	1 M	1024	800	86.94	63.58
	+ Ours (KL \rightarrow SE, $\beta = 3$)	WRN-70-16	1 M	512	400	89.01	63.35
	+ Ours (KL \rightarrow SE, $\beta = 4$)	WRN-70-16	1 M	512	400	88.57	63.74
	Gowal et al. (2021)	WRN-70-16	100M	1024	2000	88.74	66.10
	Wu et al. (2020)	WRN-34-10	×	128	200	88.51	73.66
CIFAR-10	Gowal et al. (2020)	WRN-70-16	×	512	200	90.90	74.50
$(\ell_2, \epsilon = 128/255)$	Rebuffi et al. (2021) [‡]	WRN-28-10	1 M	1024	800	90.24	77.37
	+ Ours (KL \rightarrow SE, $\beta = 3$)	WRN-28-10	1 M	512	400	91.52	77.89
	+ Ours (KL \rightarrow SE, $\beta = 4$)	WRN-28-10	1 M	512	400	90.83	78.10
	Wu et al. (2020)	WRN-34-10	×	128	200	60.38	28.86
	Gowal et al. (2020)	WRN-70-16	×	512	200	60.86	30.03
CIEA D 100	Rebuffi et al. (2021) [‡]	WRN-28-10	1 M	1024	800	59.18	30.81
$\mathbf{CIFAR-100}$	+ Ours (KL \rightarrow SE, $\beta = 3$)	WRN-28-10	1 M	512	400	63.66	31.08
$(\ell_{\infty}, \epsilon = 8/255)$	+ Ours (KL \rightarrow SE, $\beta = 4$)	WRN-28-10	1 M	512	400	62.08	31.40
	Rebuffi et al. (2021) [‡]	WRN-70-16	1 M	1024	800	60.46	33.49
	+ Ours (KL \rightarrow SE, $\beta = 3$)	WRN-70-16	1 M	512	400	65.56	33.05
	+ Ours (KL \rightarrow SE, $\beta = 4$)	WRN-70-16	1 M	512	400	63.99	33.65

Robustness and Accuracy Could Be Reconcilable by (Proper) Definition

<u>Tianyu Pang</u>, Min Lin, Xiao Yang, Jun Zhu, Shuicheng Yan ICML 2022

Better Diffusion Models Further Improve Adversarial Training Zekai Wang*, <u>Tianyu Pang</u>*, Chao Du, Min Lin, Weiwei Liu, Shuicheng Yan ICML 2023

On Evaluating Adversarial Robustness of Large Vision-Language Models Yunqing Zhao*, <u>Tianyu Pang</u>*, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, Min Lin NeurIPS 2023

Wait! Why does empirical trade-off still exit?

SCORE makes sure that there is no trade-off for the **optimal solution**, so the remain challenge leaves to **more efficient learning processes**.

- Beyond MLE (KL divergence), resorting to more advanced score matching methods (Fisher divergence) to train SCORE
- Extra data; robust architectures; training tricks

Diffusion Models for Adversarial Robustness

[Rebuffi et al., NeurIPS 2021; Gowal et al., NeurIPS 2021]

Does Lower FID lead to Better Downstream Performance?

	CIF	FAR-10 [2	29] at 32>	9] at 32×32		FFHQ [27] 64×64		[7] 64×64
	Condi	tional	Uncond	Unconditional		Unconditional		ditional
Training configuration	VP	VP VE		VE	VP	VE	VP	VE
A Baseline [49] (* pre-trained)	2.48	3.11	3.01*	3.77*	3.39	25.95	2.58	18.52
B + Adjust hyperparameters	2.18	2.48	2.51	2.94	3.13	22.53	2.43	23.12
C + Redistribute capacity	2.08	2.52	2.31	2.83	2.78	41.62	2.54	15.04
D + Our preconditioning	2.09	2.64	2.29	3.10	2.94	3.39	2.79	3.81
E + Our loss function	1.88	1.86	2.05	1.99	2.60	2.81	2.29	2.28
F + Non-leaky augmentation	1.79	1.79 1.79		1.98	2.39	2.53	1.96	2.16
NFE	35	35	35	35	79	79	79	79

Original training (config A), VP

FID 3.01 NFE 35

FID **1.97** NFE 35

FID 1.98 NFE 35

[Karras et al., NeurIPS 2022]

• New state-of-the-art!

ROBUSTBENCH

A standardized benchmark for adversarial robustness

Table 1. A brief summary comparison of test accuracy (%) between our models and existing Rank #1 models, with (\checkmark) and without (\checkmark) external datasets, as listed in RobustBench (Croce et al., 2021).

Dataset	Method	External	Clean	AA
CIFAR-10	Rank #1	×	88.74	66.11
$(\ell_{\infty}, \epsilon = 8/255)$	Kalik #1	1	92.23	66.58
$(\infty, c = 0/200)$	Ours	×	93.25	70.69
CIFAR-10	Rank #1	×	92.41	80.42
$(\ell_2, \epsilon = 128/255)$	Kalik #1	1	95.74	82.32
(02, 0 120/200)	Ours	×	95.54	84.86
CIFAR-100	Rank #1	×	63.56	34.64
$(\ell_{\infty}, \epsilon = 8/255)$	Kalik #1	\checkmark	69.15	36.88
$(\infty, c = 0/200)$	Ours	×	75.22	42.67

- Even beat previous SOTA that using external datasets
- No extra training time (only extra cost for generating data)

• Alleviate overfitting in adversarial training

Generated	Best epoch		Clean			PGD-40			AA		
	2000 0000	Best	Last	Diff	Best	Last	Diff	Best	Last	Diff	
×	91	84.55	82.59	-1.96	55.66	46.47	-9.19	54.37	45.29	-9.08	
50K	171	86.15	85.47	-0.68	56.96	50.02	-6.94	55.71	48.85	-6.86	
100K	274	88.20	87.47	-0.73	59.85	54.95	-4.90	58.85	53.42	-5.43	
200K	365	89.71	89.48	-0.23	61.69	60.32	-1.37	59.91	59.11	-0.80	
500K	395	90.76	90.58	-0.18	63.85	63.69	-0.16	62.76	62.77	+0.01	
1 M	394	91.13	90.89	-0.24	64.67	64.50	-0.17	63.35	63.50	+0.15	
5M	395	91.15	90.93	-0.22	64.88	64.88	0	64.05	64.05	0	
10 M	396	91.25	91.18	-0.07	65.03	64.96	-0.07	64.19	64.28	+0.09	
20M	399	91.17	91.07	-0.10	65.21	65.13	-0.08	64.27	64.16	-0.11	
50M	395	91.24	91.15	-0.09	65.35	65.23	-0.12	64.53	64.51	-0.02	

	Step	$\mathrm{FID}\downarrow$	Clean	PGD-40	AA
	5	35.54	88.92	57.33	57.78
	10	2.477	90.96	66.21	62.81
	15	1.848	91.05	64.56	63.24
Class-cond.	20	1.824	91.12	64.61	63.35
Class-collu.	25	1.843	91.07	64.59	63.31
	30	1.861	91.10	64.51	63.25
	35	1.874	91.01	64.55	63.13
	40	1.883	91.03	64.44	63.03
	5	37.78	88.00	56.92	57.19
	10	2.637	89.40	62.88	61.92
	15	1.998	89.36	63.47	62.31
Uncond.	20	1.963	89.76	63.66	62.45
Unconu.	25	1.977	89.61	63.63	62.40
	30	1.992	89.52	63.51	62.33
	35	2.003	89.39	63.56	62.37
	40	2.011	89.44	63.30	62.24

• Conditional > Unconditional

•	Lower	FID	is better
---	-------	-----	-----------

Table 6. Test accuracy (%) with different **augmentation methods** under the (ℓ_{∞} , $\epsilon = 8/255$) threat model on CIFAR-10, using WRN-28-10 and 1M EDM generated data.

Methed	Clean	PGD-40	AA
Common	91.12	64.61	63.35
Cutout	91.25	64.54	63.30
CutMix	91.08	64.34	62.81
AutoAugment	91.23	64.07	62.86
RandAugment	91.14	64.39	63.12
IDBH	91.08	64.41	63.24

• Data augmentation seems ineffective

Robustness and Accuracy Could Be Reconcilable by (Proper) Definition <u>Tianyu Pang</u>, Min Lin, Xiao Yang, Jun Zhu, Shuicheng Yan ICML 2022

Better Diffusion Models Further Improve Adversarial Training Zekai Wang^{*}, <u>Tianyu Pang</u>^{*}, Chao Du, Min Lin, Weiwei Liu, Shuicheng Yan ICML 2023

On Evaluating Adversarial Robustness of Large Vision-Language Models Yunqing Zhao*, <u>Tianyu Pang</u>*, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, Min Lin NeurIPS 2023

Large vision-language models (Large VLMs)

Backgrounds: Emerging Large VLMs are powerful in response generation with visual input

ChatGPTGPT411. 202203. 2023	. 20230. 20230. 1]	BLIP-2 01. 2023	LLaVA 04. 2023	Mini-GPT4 04. 2023
[Closed-Sourced]			[Open-Sourced]	
A Chatbot that provides a detailed response A More advanced system that producing safer and more useful responses.		Conditional text generation given an image and an optional text prompt.	General-purpose visual and language understanding	General-purpose visual and language understanding

Example: MiniGPT-4

Large vision-language models (Large VLMs)

Questions:

- When Large VLMs are deployed in practice:

Responsible answer generation in companies, Gov., or commercial usage

Consequently, we ask:

What if the generated responses are wrong? It may raise serious concerns

We research the "worst case" of these large VLMs:

Can we let these VLMs generate "targeted response"?

Matching image-text features (MF-it)

An intuitive method:

Matching the features via an image encoder and a text encoder

Matching image-image features (MF-ii)

Match target image features via an **image encoder** and a **text-to-image model**:

Matching text-text features (MF-tt)

Matching the features via a text encoder:

 $\underset{\|\boldsymbol{x}_{\text{cle}}-\boldsymbol{x}_{\text{adv}}\|_{p} \leq \epsilon}{\arg \max} \frac{\boldsymbol{g}_{\psi}(\boldsymbol{p}_{\theta}(\boldsymbol{x}_{\text{adv}};\boldsymbol{c}_{\text{in}}))^{\top}\boldsymbol{g}_{\psi}(\boldsymbol{c}_{\text{tar}})$

 $g_{oldsymbol{\psi}}$: text encoder

Surrogate model

 $p_{ heta}$:image-2-text model

Target model

Matching text-text features (MF-tt)

Matching the features via a text encoder (black-box setting):

$$\begin{array}{c} \arg\max g_{\psi}(p_{\theta}(x_{adv};c_{in}))^{\top}g_{\psi}(c_{tar}) \\ \|x_{cle}-x_{adv}\|_{p} \leq \epsilon \end{array} \\ \hline \text{Gradient estimation:} \quad (Eq. (4)) \\ \nabla_{x_{adv}}g_{\psi}(p_{\theta}(x_{adv};c_{in}))^{\top}g_{\psi}(c_{tar}) \\ \approx \frac{1}{N\sigma}\sum_{n=1}^{N} \left[g_{\psi}(p_{\theta}(x_{adv}+\sigma\delta_{n};c_{in}))^{\top}g_{\psi}(c_{tar}) \\ -g_{\psi}(p_{\theta}(x_{adv};c_{in}))^{\top}g_{\psi}(c_{tar})\right] \cdot \delta_{n} \end{array} \\ \hline \text{RGF-Estimator} \end{array} \\ \hline \text{RGF-Estimator} \qquad \begin{array}{c} \text{Query-based attacking strategy (MF-tt)} \\ \text{derived attacking strategy (MF-tt)} \\ \text{The victim model } p_{\theta} \\ (e_{g}, \text{MinGPT-4}) \\ \hline \text{Herived attacking strategy (MF-tt)} \\ \text{The victim model } p_{\theta} \\ (e_{g}, \text{MinGPT-4}) \\ \hline \text{Herived attacking strategy (MF-tt)} \\ \hline \text{Her$$

MF-ii + MF-tt (Ours)

Evading BLIP-2

Additional results

Li et al., Blip-2: Bootstrapping languageimage pre-training with frozen image encoders and large language models. arXiv 2023.

Evading UniDiffuser

Evading MiniGPT-4

Zhu et al., Minigpt-4: Enhancing vision-language understanding with advanced large language models. arXiv 2023.

Evading LLaVA

LLaVA: Visual Question-Answering

Liu et al., Visual instruction tuning. arXiv 2023.

Quantitative evaluation (CLIP score between text and image features)

Performance: Matching image-text features (MF-it)

Model	Clean image $oldsymbol{x}_{ ext{cle}} = h_{\xi}(oldsymbol{c}_{ ext{tar}})$		Adversa MF-ii	rial image MF-it	Time to obtain a single x_{adv} MF-ii MF-it		
CLIP (RN50) [62]	0.094	0.261	0.239	0.576	0.543	0.532	
CLIP (ViT-B/32) [62]	0.142	0.313	0.302	0.570	0.592	0.588	
BLIP (ViT) [39]	0.138	0.286	0.277	0.679	0.641	0.634	
BLIP-2 (ViT) [40]	0.037	0.302	0.294	0.502	0.855	0.852	
ALBEF (ViT) [38]	0.063	0.098	0.091	0.451	0.750	0.749	

White-box attacks against surrogate models

Good performance in white-box setting

Quantitative evaluation (CLIP text score 个)

Black-box attacks against victim models.

MF-it is not that transferrable in blackbox setting;

VLM model	Attacking method		Text e	ncoder (pre	etrained) fo	or evaluatio	n	Other in	nfo.
v Livi model	Attacking method	RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14	Ensemble	# Param.	Res
	Clean image	0.472	0.456	0.479	0.499	0.344	0.450		
BLIP [41]	MF-it	0.492	0.474	0.520	0.546	0.384	0.483	224M	384
blir [41]	MF-ii	0.766	0.753	0.774	0.786	0.696	0.755	224111	504
	MF-ii + MF-tt	0.855	0.841	0.861	0.868	0.803	0.846		
	Clean image	0.417	0.415	0.429	0.446	0.305	0.402		
UniDiffuser [5]	MF-it	0.655	0.639	0.678	0.698	0.611	0.656	1.4B	224
	MF-ii	0.709	0.695	0.721	0.733	0.637	0.700	1.4D	22-
	MF-ii + MF-tt	0.754	0.736	0.761	0.777	0.689	0.743		
Img2Prompt [30]	Clean image	0.487	0.464	0.493	0.515	0.350	0.461		
	MF-it	0.499	0.472	0.501	0.525	0.355	0.470	1.7B	384
ing2Fi0iipt [50]	MF-ii	0.502	0.479	0.505	0.529	0.366	0.476	1.75	
	MF-ii + MF-tt	0.803	0.783	0.809	0.828	0.733	0.791		
	Clean image	0.473	0.454	0.483	0.503	0.349	0.452		224
BLIP-2 [42]	MF-it	0.492	0.474	0.520	0.546	0.384	0.483	3.7B	
DEII -2 [-12]	MF-ii	0.562	0.541	0.571	0.592	0.449	0.543	5.70	22-
	MF-ii + MF-tt	0.656	0.633	0.665	0.681	0.555	0.638		
	Clean image	0.383	0.436	0.402	0.437	0.281	0.388		
LLaVA [46]	MF-it	0.389	0.441	0.417	0.452	0.288	0.397	13.3B	224
LLavA [40]	MF-ii	0.396	0.440	0.421	0.450	0.292	0.400	15.50	224
	MF-ii + MF-tt	0.548	0.559	0.563	0.590	0.448	0.542		
	Clean image	0.422	0.431	0.436	0.470	0.326	0.417		224
MiniGPT-4 [109]	MF-it	0.472	0.450	0.461	0.484	0.349	0.443	14.1B	
Minior 1-4 [109]	MF-ii	0.525	0.541	0.542	0.572	0.430	0.522	14.10	
	MF-ii + MF-tt	0.633	0.611	0.631	0.668	0.528	0.614		

Quantitative evaluation (CLIP text score 个)

Black-box attacks against victim models.

MF-it is not that transferrable in blackbox setting;

MF-ii is better, but the performance is limited by the targeted images;

VLM model	Attacking method	Text encoder (pretrained) for evaluation						Other info.	
		RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14	Ensemble	# Param.	Res
BLIP [41]	Clean image	0.472	0.456	0.479	0.499	0.344	0.450	224M	384
	MF-it	0.492	0.474	0.520	0.546	0.384	0.483		
	MF-ii	0.766	0.753	0.774	0.786	0.696	0.755	224111	
	MF-ii + MF-tt	0.855	0.841	0.861	0.868	0.803	0.846		
UniDiffuser [5]	Clean image	0.417	0.415	0.429	0.446	0.305	0.402	1.4B	224
	MF-it	0.655	0.639	0.678	0.698	0.611	0.656		
	MF-ii	0.709	0.695	0.721	0.733	0.637	0.700		
	MF-ii + MF-tt	0.754	0.736	0.761	0.777	0.689	0.743		
Img2Prompt [30]	Clean image	0.487	0.464	0.493	0.515	0.350	0.461	1.7B	384
	MF-it	0.499	0.472	0.501	0.525	0.355	0.470		
	MF-ii	0.502	0.479	0.505	0.529	0.366	0.476		
	MF-ii + MF-tt	0.803	0.783	0.809	0.828	0.733	0.791		
BLIP-2 [42]	Clean image	0.473	0.454	0.483	0.503	0.349	0.452	3.7B	224
	MF-it	0.492	0.474	0.520	0.546	0.384	0.483		
	MF-ii	0.562	0.541	0.571	0.592	0.449	0.543		
	MF-ii + MF-tt	0.656	0.633	0.665	0.681	0.555	0.638		
LLaVA [46]	Clean image	0.383	0.436	0.402	0.437	0.281	0.388	13.3B	224
	MF-it	0.389	0.441	0.417	0.452	0.288	0.397		
	MF-ii	0.396	0.440	0.421	0.450	0.292	0.400		
	MF-ii + MF-tt	0.548	0.559	0.563	0.590	0.448	0.542		
MiniGPT-4 [109]	Clean image	0.422	0.431	0.436	0.470	0.326	0.417	14.1B	224
	MF-it	0.472	0.450	0.461	0.484	0.349	0.443		
	MF-ii	0.525	0.541	0.542	0.572	0.430	0.522		
	MF-ii + MF-tt	0.633	0.611	0.631	0.668	0.528	0.614		

Quantitative evaluation (CLIP text score 个)

Black-box attacks against victim models.

MF-it is not that transferrable in blackbox setting;

MF-ii is better, but the performance is limited by the targeted images;

MF-ii + MF-tt achieves better performance

VLM model	Attacking method		Text e	encoder (pre	etrained) fo	or evaluatio	n	Other info.	
		RN50	RN101	ViT-B/16	ViT-B/32	ViT-L/14	Ensemble	# Param.	Res
BLIP [41]	Clean image	0.472	0.456	0.479	0.499	0.344	0.450	224M	384
	MF-it	0.492	0.474	0.520	0.546	0.384	0.483		
	MF-ii	0.766	0.753	0.774	0.786	0.696	0.755		
	MF-ii + MF-tt	0.855	0.841	0.861	0.868	0.803	0.846		
UniDiffuser [5]	Clean image	0.417	0.415	0.429	0.446	0.305	0.402	1.4B	224
	MF-it	0.655	0.639	0.678	0.698	0.611	0.656		
	MF-ii	0.709	0.695	0.721	0.733	0.637	0.700		
	MF-ii + MF-tt	0.754	0.736	0.761	0.777	0.689	0.743		
Img2Prompt [30]	Clean image	0.487	0.464	0.493	0.515	0.350	0.461	1.7B	384
	MF-it	0.499	0.472	0.501	0.525	0.355	0.470		
	MF-ii	0.502	0.479	0.505	0.529	0.366	0.476		
	MF-ii + MF-tt	0.803	0.783	0.809	0.828	0.733	0.791		
BLIP-2 [42]	Clean image	0.473	0.454	0.483	0.503	0.349	0.452	3.7B	224
	MF-it	0.492	0.474	0.520	0.546	0.384	0.483		
	MF-ii	0.562	0.541	0.571	0.592	0.449	0.543		
	MF-ii + MF-tt	0.656	0.633	0.665	0.681	0.555	0.638		
LLaVA [46]	Clean image	0.383	0.436	0.402	0.437	0.281	0.388	13.3B	224
	MF-it	0.389	0.441	0.417	0.452	0.288	0.397		
	MF-ii	0.396	0.440	0.421	0.450	0.292	0.400		
	MF-ii + MF-tt	0.548	0.559	0.563	0.590	0.448	0.542		
MiniGPT-4 [109]	Clean image	0.422	0.431	0.436	0.470	0.326	0.417	14.1B	224
	MF-it	0.472	0.450	0.461	0.484	0.349	0.443		
	MF-ii	0.525	0.541	0.542	0.572	0.430	0.522		
	MF-ii + MF-tt	0.633	0.611	0.631	0.668	0.528	0.614		

Visual interpretation via GradCAM Analysis

- (a): Craft an adv image given a target string and a target image
- (b): GradCAM shows good correspondence to the query text over clean images, but not for adv images.
- (c): For adv image, we obtain similar GradCAM results as the target image.

Trade-off between image quality and perturbation budget

LPIPS indicates perceptual similarity to the clean image.

Lower means better quality

Sensitivity to common corruption

Increase the power of noise perturbation

Sensitivity of adversarial examples to Gaussian noises.

Failure cases

Two failure cases, where the correct response is generated over adv images.

Robustness and Accuracy Could Be Reconcilable by (Proper) Definition <u>Tianyu Pang</u>, Min Lin, Xiao Yang, Jun Zhu, Shuicheng Yan ICML 2022

Better Diffusion Models Further Improve Adversarial Training Zekai Wang^{*}, <u>Tianyu Pang</u>^{*}, Chao Du, Min Lin, Weiwei Liu, Shuicheng Yan ICML 2023

On Evaluating Adversarial Robustness of Large Vision-Language Models Yunqing Zhao^{*}, <u>Tianyu Pang</u>^{*}, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, Min Lin NeurIPS 2023

Joint work with

Yunqing Zhao

Zekai Wang

Chao Du

Thanks!

Contact: tianyupang3@gmail.com

Homepage: https://p2333.github.io/

Welcome for collaboration on **Trustworthy AI & Generative Models**